Fakultät für Mathematik und Naturwissenschaften

Oberseminar: Tobias Harz (G.15.25)

29.01.2026|16:15 Uhr

Approximation of polynomial hulls by analytic varieties: A counterexample

We construct a connected, compact set $K \subset \mathbb{C}^2$ with the following property:
there exist points $p \in \hat{K} \setminus K$ such that there does not exist a sequence $\{A_\nu\}$ of analytic sets $A_\nu \subset\subset \mathbb{C}^2$ with boundary satisfying $p \in A_\nu$ for every $\nu \in \mathbb{N}$ and $\lim_{\nu\to\infty} bA_\nu \subset K$.
For every point in $\hat{K} \setminus K$, we explicitly construct a sequence of Poletsky discs, and we compute the weak limit of the pushforwards of the Green current under these discs.