

Lösungen zu Übungsblatt 12

Mathematik für Ingenieure (Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe13/14 – Dipl.-Math. T. Pawlaschyk, 21.01.14

Themen: Horner-Schema, Polynomdivision, trigonometrische Funktionen

Aufgabe 1

- (a) Sei $f(x) = x^4 + x^3 20x^2 + 72$. Zeigen Sie, dass $x_0 = 3$ und $x_1 = -2$ Nullstellen von f sind. Finden Sie ein Polynom g vom Grad 2, so dass f(x) = (x 3)(x + 2)g(x) gilt. Was sind die Nullstellen von g?
- (b) Sei $f(x) = x^6 4x^5 6x^4 68x^3 223x^2 240x 84$. Zeigen Sie, dass $x_0 = -1$ und $x_1 = 7$ Nullstellen von f sind und bestimmen Sie jeweils ihre Vielfachheit.
- (c) Sei $f(x) = x^3 + 14x^2 + 37x + 59$. Bestimmen Sie Koeffizienten $a, b, c, d \in \mathbb{R}$, so dass f die folgende Form hat:

$$f(x) = a(x+2)^3 + b(x+2)^2 + c(x+2) + d$$

Hinweis: Benutzen Sie das Horner-Schema.

Lösungen zu Aufgabe 1

Zu (a): Dass $x_0 = 3$ und $x_1 = -2$ Nullstellen von f sind, prüft man leicht durch Einsetzen. Mit Hilfe des Horner-Schemas erhalten wir:

	1	1	-20	0	72
-3		3	12	-24	-72
+	1	4	-8	-24	0
$\cdot (-2)$		-2	-4	24	
+	1	2	-12	0	

D.h. $f(x) = (x-3)(x+2)(x^2+2x-12)$. Mit der pq-Formel erhalten wir folgende Nullstellen für $g(x) = x^2 + 2x - 12$.

$$x_{2,3} = -1 \pm \sqrt{13}$$
.

Zu (b).

Wir setzen $x_0 = -1$ und $x_1 = 7$ in f ein und sehen leicht, dass es sich um Nullstellen handelt. Wir verwenden das Hornerschema:

	1	-4	-6	-68	-223	-240	-84
$\overline{\cdot (-1)}$		-1	5	1	67	156	84
+	1	-5	-1	-67	-156	-84	0
. 7		7	14	91	168	84	
+	1	2	13	24	12	0	

Wir führen das Schema fort und prüfen, ob 7 eine Nullstelle von höherer Vielfachheit als 1 ist.

	1	2	13	24	12
.7		7	63	432	3192
+	1	9	76	456	3204

Da $3204 \neq 0$, hat f in 7 nur eine Nullstelle von Vielfachheit 1. Wir greifen das vorletzte Schema auf und untersuchen die Nullstelle -1.

	1	2	13	24	12
$\cdot (-1)$		-1	-1	-12	-12
+	1	1	12	12	0
$\overline{\cdot (-1)}$		-1	0	-12	
+	1	0	12	0	
$\overline{\cdot (-1)}$		-1	1		
+	1	-1	13		

Da $13 \neq 0$, ist die Vielfachheit der Nullstelle -1 also 3. f hat dann die Gestalt $f(x) = (x+1)^3(x-1)^3$ $7)(x^2+12).$

Zu (c):

Wir verwenden das Horner-Schema für die Stelle $x_0 = -2$:

	1	14	37	59
$\cdot (-2)$		-2	-24	-26
+	1	12	13	33
$\cdot (-2)$		-2	-20	
+	1	10	-7	
$\cdot (-2)$		-2		
+	1	8		

Somit ist $f(x) = (x+2)^3 + 8(x+2)^2 - 7(x+2) + 33$.

Aufgabe 2 Untersuchen Sie das asymptotische Verhalten folgender rationaler Funktionen für $|x| \to \infty$.

(a)
$$f(x) = \frac{x^5 - 7x^2 + 13x - 2}{x^2 + 7}$$
 (b) $g(x) = \frac{2x^5 - x^3 + 7x - 2}{x^2 - 2x}$

Skizzieren Sie den Graphen von q.

Hinweis: Benutzen Sie Polynomdivision.

Lösungen zu Aufgabe 2

Zu (a):

Mit Polynomdivision erhalten wir folgenden Ausdruck für f:

$$(x^{5} - 7x^{2} + 13x - 2) : (x^{2} + 7) = x^{3} - 7x - 7 + \frac{62x + 51}{x^{2} + 7}$$

$$-(x^{5} + 7x^{3}) - 7x^{2} - 7x^{2} + 13x - 2$$

$$-(-7x^{3} - 49x) - 7x^{2} + 62x - 2$$

$$-(-7x^{2} - 49) - 62x + 51$$

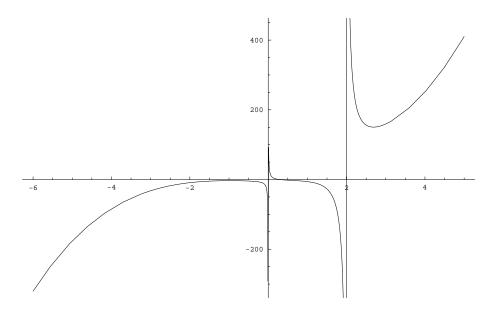
Für $|x| \to \infty$ verhält sich demnach g wie das Polynom $x^3 - 7x - 7$.

Zu (b):

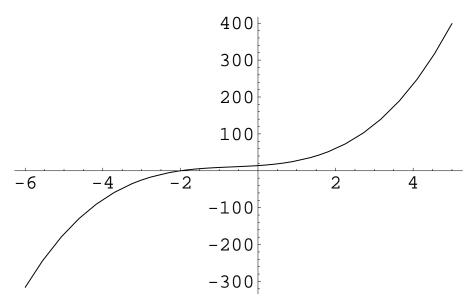
Polynomdivision liefert:

$$(2x^{5} - x^{3} + 7x - 2) : (x^{2} - 2x) = 2x^{3} + 4x^{2} + 7x + 14 + \frac{21x - 2}{x^{2} - 2x} - \frac{(2x^{5} - 4x^{4})}{4x^{4} - x^{3} + 7x - 2} - \frac{(4x^{4} - 8x^{3})}{7x^{3} + 7x - 2} - \frac{(7x^{3} - 14x^{2})}{14x^{2} + 7x - 2} - \frac{(14x^{2} - 14x)}{21x - 2}$$
and wie $2x^{3} + 4x^{2} + 7x + 14$ für $|x| \to \infty$. Der Graph von a sieht w

Somit verhält sich g wie $2x^3 + 4x^2 + 7x + 14$ für $|x| \to \infty$. Der Graph von g sieht wie folgt aus:



Zum Vergleich hier der Graph von $2x^3 + 4x^2 + 7x + 14$:



Aufgabe 3

(a) Benutzen Sie das Additionstheorem für sin, sowie die Formel für $\cos(2x)$ und $\sin(2x)$ um herzuleiten, dass

$$\sin(5x) = \sin x \cdot (4\cos^2(2x) + 2\cos(2x) - 1)$$

gilt. Berechnen Sie damit $\cos(\frac{2\pi}{5})$.

(b) Vervollständigen Sie die folgende Tabelle.

α	15°	30°	45°			90°		180°		270°	330°		420°
\overline{x}		$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$						2π	
$\sin(x)$							$\frac{1}{2}\sqrt{3}$						
$\cos(x)$									$-\frac{1}{2\sqrt{2}}$				
tg(x)						×		×		×		×	

(c) Bestimmen Sie die Periode und die Nullstellen der nachstehenden Funktionen.

(i)
$$\cos(3x - \pi/3)$$

(ii)
$$\sin(\pi/8 - 3x/4)$$

(i)
$$\cos(3x - \pi/3)$$
 (ii) $\sin(\pi/8 - 3x/4)$ (iii) $-2\cos^2(3x + \pi/5)$

Lösungen zu Aufgabe 3

(a): Es gilt

$$sin(5x) = \sin x \cos(4x) + \cos x \sin(4x)
= \sin x \cos(4x) + 2\cos x \sin(2x)\cos(2x)
= \sin x \cos(4x) + 4\cos^2 x \sin x \cos(2x)
= \sin x \left(2\cos^2(2x) - 1 + 4\cos^2 x \cos(2x)\right)
= \sin x \left(2\cos^2(2x) - 1 + 2(\cos(2x) + 1)\cos(2x)\right)
= \sin x \left(4\cos^2(2x) + 2\cos(2x) - 1\right)
= 4\sin x \left(\cos^2(2x) + \frac{1}{2}\cos(2x) - \frac{1}{4}\right)$$

Jetzt sei $x = \pi/5$ und $s = \cos(2\pi/5)$. Dann löst s die Gleichung

$$s^2 + \frac{1}{2}s = \frac{1}{4},$$

also ist

$$\cos(2\pi/5) = s = \frac{\sqrt{5} - 1}{4}$$

(b)

α	15°	30°	45°	60°	72°	90°	120°	180°	225°	270°	330°	360°	420°
\overline{x}	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{11\pi}{6}$	2π	$\frac{7\pi}{3}$
$\sin(x)$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	1	$\frac{\sqrt{3}}{2}$	-1	$-\frac{1}{\sqrt{2}}$	-1	$-\frac{1}{2}$	0	$\frac{\sqrt{3}}{2}$
$\cos(x)$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\frac{\sqrt{5}-1}{4}$	0	$-\frac{1}{2}$	0	$-\frac{1}{2\sqrt{2}}$	0	$\frac{\sqrt{3}}{2}$	1	$\frac{1}{2}$
tg(x)	$2-\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\sqrt{5+2\sqrt{5}}$	×	$-\sqrt{3}$	×	1	×	$-\frac{1}{\sqrt{3}}$	×	$\sqrt{3}$

Z.B.: Um sin(45°) und cos(45°) auszurechnen, benutzen wir den Satz von Pythagoras. Diese Zahlen sind genau die Seitenlänge d eines Quadrats mit Diagonallänge 1. Also gleich $1/\sqrt{2}$.

(c)(i) Der Kosinus verschwindet genau für Punkte $y = \pi/2 + \pi k$, wobei $k \in \mathbb{Z}$. Für welche x gilt also

$$3x - \pi/3 = \pi/2 + \pi k$$
?

Auflösen nach x liefert die Nullstellen $x = \frac{\pi}{3}(5/6 + k), k \in \mathbb{Z}$.

Wir wissen, dass der Kosinus 2π -periodisch ist. Wir setzen $x = y + 2\pi/3$ ein und erhalten

$$\cos(3x - \pi/3) = \cos(3(x + 2\pi/3) - \pi/3) = \cos(3y - \pi/3 + 2\pi) = \cos(3y - \pi/3).$$

Also ist die Periode $2\pi/3$.

(ii) Der Sinus verschwindet an den Stellen $x=\pi k,\,k\in\mathbb{Z}$. Ähnlich wie in (i) setzen wir gleich und lösen nach x auf

$$\pi/8 - 3x/4 = \pi k \quad \Leftrightarrow \quad x = \frac{4\pi}{3}(1/8 - k)$$

Die Periode ist $8\pi/3$. Denn für $x=y+8\pi/3$ eingesetzt erhält man

$$\sin(\pi/8 - 3x/4) = \sin(\pi/8 - 3(y + 8\pi/3)/4) = \sin(\pi/8 - 3y/4 + 2\pi) = \sin(\pi/8 - 3y/4).$$

(iii) Der Kosinus verschwindet genau dann, wenn sein Quadrat verschwindet. Also gehen wir wie in (i)(a) vor, setzen gleich und lösen nach x auf:

$$3x + \pi/5 = \pi/2 + \pi k \quad \Leftrightarrow \quad x = \frac{\pi}{3}(3/10 + k).$$

Wir haben für die Periode des Quadrats des Kosinus:

$$\cos^{2}(y+\pi) = (\pm \cos(y))^{2} = \cos(y).$$

Die Periode ist also $\pi/3$, wie man leicht nachrechnet.