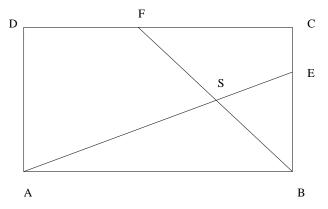


Übungsblatt 4

Mathematik für Ingenieure (Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe13/14 – Dipl.-Math. T. Pawlaschyk, 12.11.13

Themen: Induktion, Vektorrechnung im \mathbb{R}^2


Aufgabe 1 Beweisen Sie jeweils folgende Gleichheit für alle $n \in \mathbb{N}$: $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

Aufgabe 2 Zeigen Sie induktiv, dass für alle $n \in \mathbb{N}$, $n \geq 2$, gilt:

$$\left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{4}\right) \cdot \ldots \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}$$

Aufgabe 3 (a) Seien die Punkte $\vec{a} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$ gegeben. Bestimmen Sie den Punkt \vec{c} , der die Strecke \overline{AB} im Verhältnis 3:2 teilt.

(b) Gegeben sei das folgende Rechteck:

Dabei teilt E die Strecke BC im Verhältnis 3:1 und F die Strecke CD im Verhältnis 4:3. In welchem Verhältnis wird AE durch S geteilt?

Aufgabe 4 a) Der Schwerpunkt eines Dreiecks ist definiert als der Schnittpunkt der 3 Seitenhalbierenden.

- (i) Bestimmen Sie den Schwerpunkt des Dreiecks, dessen Eckpunkte durch $\vec{A} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\vec{B} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ und $\vec{C} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ gegeben sind.
- b) Sei G die Gerade durch $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Welchen Abstand hat der Punkt $\vec{P} := \begin{pmatrix} 8 \\ 9 \end{pmatrix}$ von G? Welcher Punkt auf G hat von \vec{P} den kleinsten Abstand?