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The Brunn Minkowski theorem.

Let A0 and A1 be convex bodies in Rn. Denote by |A| the (Lebesgue)
volume of |A|.

Theorem

|A0 + A1|1/n ≥ |A0|1/n + |A1|1/n.

We will give a number of ‘equivalent’ formulations.
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Let At := tA1 + (1− t)A0. Then

|At |1/n is a concave function of t . (1)

log |At | is a concave function of t . (2)

|At | ≥ min (|A0|, |A1|). (3)

B-M implies (1). It is also clear that (1) implies (2] which implies (3).
But, they are actually all equivalent.
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Proof

It suffices to show that (3) implies B-M.
Let

t =
|A1|1/n

|A0|1/n + |A1|1/n .

Then

1− t =
|A0|1/n

|A0|1/n + |A1|1/n .

(3) implies that

|tA1/|A1|1/n + (1− t)A0/|A0|1/n| ≥ 1.

This gives B-M.
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An application

Let B be the unit ball and put

f (t) := |A + tB|.

Then f ′(0) = |∂A|. B-M implies that for t > 0

f 1/n ≥ |A|1/n + t |B|1/n. (4)

Hence
|∂A|
|A|1−1/n ≥ n|B|1/n.

But equality holds when A = B (!). Hence we get the isoperimetric
inequality

|∂A|
|A|1−1/n ≥

|∂B|
|B|1−1/n .
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Yet another reformulation

Let A be a convex body in Rn+1 and put

At = {x ∈ Rn; (t , x) ∈ A}.

Then
log |At |

is a concave function of t .
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Function version of B-M

Let φ(t , x) be a convex function on Rn+1. Let

φ̃(t) := − log

∫
Rn

e−φ(t ,x)dx .

We then have the following generalization of B-M, due to Prékopa:

Theorem
φ̃ is convex function of t.

The version of B-M on the previous slide follows if we take φ to be
infinity outside of A and zero inside. Measures of the form e−φdx with
φ convex are called log-concave. Prékopa’s theorem says that
marginals of log-concave measures are log-concave. We also see that
the B-M version on the previous slide holds not just for Lebesgue
measure, but for any log-concave measure (like Gaussians).
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Proof of Prekopa

It suffices to prove Prekopa when n = 1 (!) The main point in the proof
we will give is the Brascamp-Lieb inequality:

Theorem
Let ψ be convex on R and assume∫

e−ψdx <∞.

Let u be a function in L2(e−ψ), and put

û =

∫
ue−ψ/

∫
e−ψ.

Then ∫
(u − û)2e−ψ ≤

∫
(u′)2/ψ′′e−ψ.
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Remarks on Brascamp-Lieb

1. u = ψ′ gives equality.

2. Equivalent formulation: The minimal solution to u′ = f in L2(e−ψ)
satisfies ∫

u2e−ψ ≤
∫

f 2/ψ′′e−ψ.

3. This is similar to Hormander’s L2-estimates for the ∂̄-equation.
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Proof of Brascamp-Lieb

We assume that ψ is smooth and strictly convex. It has a minimum
somewhere; say for x = 0. Write

u − u(0) = kψ′.

Then u′ = k ′ψ′ + kψ′′. We get∫
(u′)2/ψ′′e−ψ =

∫
(k2ψ′′ + (k ′ψ′)2/ψ′′ + 2k ′kψ′)e−ψ ≥

∫
(kψ′)2e−ψ

=

∫
(u − u(0))2e−ψ ≥

∫
(u − û)2e−ψ.
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Proof of Prekopa

A direct computation, with a twist:

d/dt log

∫
e−φ = −

∫
φ̇e−φ∫
e−φ

= − ˆ̇φ.

Differentiating once more we get

−
∫
φ̈e−φ +

∫
(φ̇)2e−φ∫

e−φ
− ( ˆ̇φ)2.

Rewriting:
−
∫
φ̈e−φe−φ∫

e−φ
+

∫
(φ̇− ˆ̇φ)2e−φ∫

e−φ
.
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invoking Brascamp-Lieb

−
∫
φ̈e−φe−φ∫

e−φ
+

∫
(φ̇− ˆ̇φ)2e−φ∫

e−φ
.

By Brascamp-Lieb this is smaller than

−
∫

(φ̈− (φ̇′)2/φ′′)e−φ.

The integrand is the determinant of the Hessian of φ, divided by φ′′,
hence positive.
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The Legendre transform

Let φ be any function on Rn, taking values in R ∪∞. Its Legendre
transform is

L(φ)(y) = φ̂(y) = sup
x

y · x − φ(x).

Example 1: φ(x) = 0. Then φ̂(y) =∞ except for y = 0 and φ̂(0) = 0.

Example 2: φ(x) = x2/2. Then φ̂(y) = y2/2.
These examples illustrate the idea that the Legendre transform is an
analog of the Fourier-Laplace transform, if we replace integrals by
suprema. If we associate to φ the density e−φ, the second example is
analogous to ‘the Fourier transform of a Gaussian is a Gaussian’. The
first example is analogous to ‘the Fourier transform of 1 is a Dirac
measure’.
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Let φ◦ be the supremum of all affine functions smaller than φ.

Theorem

L2(φ) = φ◦.

By the hyperplane separation theorem, φ◦ = φ if and only if φ is convex
and lower semicontinuous.

Corollary

L2(φ) = φ

if and only if φ is convex and lower semicontinuous.
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Proof

φ◦(x) = supy ,cy · x − c.

The sup is taken over (y , c) such that

y · z − c ≤ φ(z) for all z

i. e. φ̂(y) ≤ c. Hence

φ◦(x) = sup
y ,c

y · x − c = sup
y

y · x − φ̂(y) = L2(φ)(x).
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A special case

We look at functions φ of class C2, strictly convex in all of Rn. Assume
also that φ grows faster than linearly at infinity.

Theorem
φ̂ is also of class C2, strictly convex in all of Rn. The map

x → ∂φ(x)

is a diffeomorphism of Rn with inverse y → ∂φ̂. The Hessian of φ̂ is the
inverse of the Hessian of φ at corresponding points.

Remark: That the two gradient maps are inverses of each other gives
an alternative definition of φ̂; (probably) the original definition of
Legendre.
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Proof

The supremum in
φ̂(y) = sup

x
x · y − φ(x)

is attained in the unique point xy where y = ∂φ(x). Hence
φ̂(y) = xy · y − φ(xy ), so φ̂ is at least one time continuously
differentiable. Expressed slightly differently

x · y ≤ φ(x) + φ̂(y)

with equality exactly when y = ∂φ(x). Since L2(φ) = φ, equality also
holds exactly when x = ∂φ̂(y). Therefore ∂φ and ∂φ̂ are inverse maps,
so in fact φ̂ is of class C2. This implies also the last claim.
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The differential of the Legendre transform

Theorem
The map φ→ L(φ] is (Frechet) differentiable (on our class of functions)
with derivative

dLφ.u(y) = −u ◦ ∂φ̂(y)

if u has compact support.

In other words

(d/dt |0)L(φ+ tu)(y) = −u(∂φ̂(y)).

Equivalently:
dLφ.u(∂φ(x)) = −u(x).
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Proof

The gradient map of L(φ+ tu) is the inverse of the gradient map of
φ+ tu. Hence it is a C1-function of t . Therefore L(φ+ tu) is also
differentiable in t .
Recall that

φ̂(∂φ(x)) = x · ∂φ(x)− φ(x).

Hence

L(φ+ tu)(φ(x) + tu(x)) = x · ∂φ(x) + tx · ∂u(x)− φ(x)− tu(x).

The theorem follows by identifying terms of order 1 in t .
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The space of convex functions

Let
CVX = {φ : Rn → R; (φjk ) > 0}.

Let also
T (CVX ) = C2

c (Rn).

We introduce two Riemannian metrics on the tangent space at a point
φ in CVX .

|u|20 :=

∫
Rn
|u|2dx

and
|u|21 :=

∫
Rn
|u|2MA(φ),

where MA(φ) = det(φjk )dx .
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We have seen that the Legendre transform maps CVX to itself.

Let t → φt be a curve in CVX, and ψt = L(φt ).

|φ̇t |20 =

∫
|φ̇t |2(x)dx = [x = ∂ψt (y)] =

∫
|ψ̇t |2MA(ψt ) = |ψ̇t |21.

Hence the Legendre transform is an isometry between the two metrics.
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Connections on a Riemannian manifold

If X and Y are vector fields on a Riemannian manifold, a conection is a
way to differentiate X along Y ; DY X . It must satisfy the product rule

DY (fX ) = fDY X + Y (f )X ,

if f is a function. D is compatible with the metric if

Y |X |2 = 2〈DY X ,X 〉.

D is symmetric if DY X = DX Y when X and Y Lie commute. There is a
unique symmetric connection, compatible with the metric on a finite
dimensional Riemannian manifold.
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Geodesics

A curve is a geodesic if its geodesic curvature is zero, i. e.

“((d/dt)ẋt ))′′ = Dẋt
ẋt = 0.

Let M be Rn with the trivial metric. The Riemannian connection is (
X = (X1, ...Xn))

DY (X ) = (Y (X1), ...Y (Xn))

xt is a geodesic if and only if

(d/dt)ẋt = 0 xt = x0 + t ẋ0.
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Let φt be a curve in CVX. Then

φ̇t |φ̇t |20 = (d/dt)|φ̇t |20 = 2
∫
φ̈t φ̇tdx .

This suggests that the connection for our first metric should be such
that

Dφ̇t
φ̇t = φ̈t .

Geodesics are then given by φt = φ0 + t φ̇t .

Notice that between any two functions, φ0 and φ1 there is always a
geodesic, tφ1 + (1− t)φ0.

Moreover, given a function φ and a direction in the tangents space, u,
there is a short geodesic segment starting in that direction, φ+ tu.

What about the second metric?
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A computation that we postpone gives that

(d/dt)
∫
|φ̇t |2MA(φt ) = 2

∫
c(φ)φ̇tMA(φt ),

where
c(φt ) = φ̈t − |d φ̇t |2(φj k

t )
.

We put
Dφ̇t

φ̇t := c(φt ).
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A linear algebra exercise gives that

c(φt ) = MA(φ(t , x))/MA(φt ).

(This is easy to see when n = 1.)

Hence geodesics for the second metric are given by solutions to the
homogenous Monge-Ampere equation

MA(φ(t , x)) = 0.

These are mapped to linear curves

ψt = ψ0 + tψ̇0

under the Legendre transform.
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Consequences

Since the two metrics are isometric (under the Legendre transform),
we still have:

1.Between any two points, φ0 and φ1, there is a geodesic (for the
second metric!) joining them.
(This means we can solve the homogeneous Monge-Ampere equation
with given boundary values.)

2. Given one point φ and a direction in the tangent space u, there is a
geodesic segment starting at φ in that direction.
(Solvability of the initial value problem for the homogeneous
Monge-Ampere equation.)
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Hessians

Connections also act on differential forms by the product rule

Y (α.X ) = DYα.X + α.DY X .

If F is a function on M, its Hessian is the quadratic form

H(F )(X ,X ) := DX dF .X .

Then

(d/dt)2F (xt ) = (d/dt)dF .ẋt = dF .Dẋt
ẋt + H(F )(ẋt , ẋt ).

This gives another way to define the Hessian of F .
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Let M = CVX and take

P(φ) = − log

∫
e−φ,

the Prekopa function on CVX .

(d/dt)2P(φt ) =

∫
(φ̈t − (φ̇t − ̂̇φt )

2)e−φt∫
e−φt

=

= dP.c(φt ) +

∫
|d φ̇t |2e−φt −

∫
(φ̇t − ̂̇φt )

2e−φt∫
e−φt

.
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Conclusion

Hence the Hessian of the Prekopa function is

H(P) =

∫
|d φ̇t |2e−φt −

∫
(φ̇t − ̂̇φt )

2e−φt∫
e−φt

,

the Brascamp-Lieb quadratic form. Every geodesic (for the second
metric!) is convex in (t , x). (This is not true for the first metric.)
Therefore, Prekopa’s theorem implies that P is convex along
geodesics, which in turn implies that the Hessian is positive.

This is the Brascamp-Lieb inequality in any dimension. Hence B-L is
equivalent to Prekopa; they both imply each other.
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The minimum principle

Proposition
Let φ(t , x) be convex in (t , x). Then

inf
x
φ(t , x)

is a convex function of t

First proof: For any p > 0

−(1/p) log

∫
x

e−pφ(t ,x)dx

is convex in t by Prékopa.Take limit as p →∞.
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Second proof:

Let
Eφ := {(s, t , x); s > φ(t , x)}

be the epigraph of φ. A function is convex if and only if its epigraph is a
convex set. Use that the projection of a convex set is convex.
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Complex version ?

Let φ(τ, z) be psh in Cn+1. Put

φ̃(τ) := − log

∫
e−φ(τ,z)dλ(z).

Is φ̃ psh?

No!
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Kiselman’s example

Take n = 1. Let

φ(τ, z) = |z − τ̄ |2 − |τ |2 = |z|2 − 2Re zτ.

Then ∫
e−φ(τ,z) = ce|τ |

2
.

Hence φ̃(τ) is not psh.

Nevertheless, φ̃ is psh under some conditions:
1. If φ(τ, z) ≤ C(τ) + (n + 1) log(1 + |z|2).
2. If φ is S1-invariant in z; φ(τ,eiθz) = φ(τ, z).

Why?
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Example 1

Theorem
Assume that U ⊂ Cn is pseudoconvex and balanced in the sense that
z ∈ U and |λ| ≤ 1 implies that λz ∈ U. Let ψ(τ, z) be S1-invariant in z
and psh in ∆× U, and put

ψ̃(τ) = − log

∫
U

e−ψ(τ,z)dλ(z).

Then ψ̃ is subharmonic.
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Example 2

Theorem
Let ψ be psh in ∆× (C∗)n and toric invariant in z in the sense that

ψ(τ,eiθ1z1, ...eiθnzn) = ψ(τ, z).

Let as before
ψ̃(τ) = − log

∫
e−ψ(τ,z)dλ(z).

Then ψ̃ is subharmonic.
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Explanation

Change variables by zj = eζj , ζ = ξ + iη. Then

ψ(τ, z1, ...zn) = ψ(τ,eξ1 , ...eξn ) =: φ(τ, ξ1, ...ξn).

We have ∫
e−ψ(τ,z)dλ(z) =

∫
Rn

e−φ(τ,ξ)+ξ1...ξndξ.

If ψ is S1-invariant in τ too, we get back Prekopa.We also get that

inf
ξ
φ(τ, ξ)

is subharmonic; Kiselman’s minimum principle.
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Interlude: The Bergman kernel

Let (X , µ) be a measure space; µ ≥ 0. Let V be a closed subspace of
L2(X , µ).

Assume that for all x in X , the evaluation map

evx (f ) = f (x)

is bounded on V . Then there is, for all x , and f in V , an element kx in
V such that

f (x) =

∫
f (y)kx (y)dµ(y).

By definition
k(y , x) = kx (y)

is the Bergman kernel for V .
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Basic properties

Let e1,e2, ... be an orthonormal basis for V .

Proposition ∑
|ej(x)|2 = ‖evx‖2 <∞.∑

ej(y)ej(x) = k(y , x), k(x , y) = k(y , x)∫
k(x , x)dµ(x) = dim V .

All of this follows from

kx (y) =
∑

cjej(y), ek (x) = 〈ek , kx〉 = c̄k .
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Note also that∫
k(y , x)k(y , x)dµ(y) =

∫
|k(y , x)|2dµ(y) = ‖evx‖2 = k(x , x).
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Examples

Example 1: D is a domain in Rn; V is the space of constant functions.
Its dimension is 1 and e1 = 1/|D|1/2. Hence

kx (y) =
1
|D|

.

Example 2: ∆ is the unit ball in Cn; µ is Lebesgue measure. V is the
space of holomorphic functions.

kz(ζ) =
n!

πn
1

(1− ζ · z)n .

Example 3: X = Cn, dµ = e−|z|
2
dλ(z). V is the space of holomorphic

functions.

Kz(ζ) =
eζ·z̄

πn .
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Complex Prekopa/Brunn-Minkowski I

Theorem
Let D be a pseudoconvex domain in Cn+1 and φ(τ, z) a psh function in
D. Let

Dτ = {z ∈ Cn; (τ, z) ∈ D}.

Let for each τ , Bτ (z) be the diagonal Bergman kernel for
A2(Dτ ,e−φ(τ,z)) . Then

log Bτ (z)

is psh in D.

(The diagonal Bergman kernel is k(x) = k(x , x) = ‖evx‖2.)
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Example 1

Let D be Cn+1 and assume φ satisfies

φ(τ, z) ≤ C(τ) + (n + 1) log(1 + |z|2).

Then A2
τ consists only of constants. Hence

Bτ (z) = (

∫
Cn

e−φτ dλ)−1/2.

Hence φ̃(τ) is subharmonic in this case.
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Example 2

Assume Dτ is balanced and that φτ is S1-invariant for all τ . Then

Bτ (0) = (

∫
Dτ

e−φτ dλ)−1/2.

Hence φ̃ is subharmonic in this case.
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Hormander’s theorem

Hormander’s theorem is the main ingredient in the proof of the
complex Prekopa theorem. It is a complex analog of the
Brascamp-Lieb inequality (actually proved earlier).

Theorem
Let D be a pseudoconvex domain in Cn and let φ be smooth and
strictly psh in D. Let f be a ∂̄-closed (0,1)-form in D. Then the
L2-minimal solution to ∂̄u = f satisfies the estimate∫

D
|u|2e−φ ≤

∫
D
|f |2
∂∂̄φ

e−φ,

where
|f |2
∂∂̄φ

=
∑

φj k̄ fj f̄k .
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Geometric form of Hormander’s theorem

Let X be a compact complex manifold and L a holomorphic line bundle
over X equipped with a strictly positively curved metric h = e−φ. Let f
be a ∂̄-closed (n,1)-form on X with values in L.

Theorem
Let u be the L2-minimal solution to ∂̄u = f . Then∫

X
|u|2e−φ ≤

∫
X
|f |2
∂∂̄φ

e−φ

1. u is an (n,0)-form so its L2-norm
∫

cnu ∧ ū is well defined without
choosing any measure on X .

2. f can be written locally f = f0 ∧ v where v is (n,0) and f0 is (0,1).

|f |2
∂∂̄φ

=: cnv ∧ v̄ |f0|2∂∂̄φ,

where the last factor is the pointwise norm of f0 w r t the Kahler metric
i∂∂̄φ.
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Sketch of proof of complex Prekopa

Assume first that D = ∆× D is a cylinder; Dτ = D ⊂ Cn. Let

∂φτ = eφ∂/∂τe−φ = ∂τ − ∂τφ.

Since, if h is holomorphic

h(z) =

∫
h(ζ)Kτ (ζ, z)e−φ(τ,ζ),

we get
∂φτ Kτ (·, z) ⊥ h

for any holomorphic h.
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We have
Kτ (z, z) =

∫
Kτ (ζ, z)Kτ (ζ, z)e−φ.

It follows (using the orthogonality condition)

∂τ̄Kτ =

∫
∂τ̄Kτ (ζ, z)Kτ (ζ, z)e−φ

and
∂τ∂τ̄Kτ =

∫
∂φτ ∂τ̄Kτ (ζ, z)Kτ (ζ, z)e−φ + pos.

Use the commutator relation

∂φτ ∂τ̄ = ∂τ̄∂
φ
τ + φτ τ̄ .
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The result is

∂τ∂τ̄Kτ ≥
∫
∂τ̄∂

φ
τ K τKτe−φ +

∫
φτ τ̄ |Kτ |2e−φ =: I + II

But, using again the orthogonality

I = −
∫
|∂φτ Kτ |2e−φ =: −

∫
|u|2e−φ.

This term has a bad sign, but we know that u is orthogonal to all
holomorphic functions. So, we can use Hormander’s inequality∫

|u|2e−φ ≤
∫

D
|∂̄ζu|2∂∂̄φe−φ.

And
∂̄ζu = −∂̄ζ∂τφ(τ, ζ)Kτ .
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Putting things together

we get that

∂τ∂τ̄Kτ ≥
∫

[φτ τ̄ − |∂̄ζ∂τφ|2∂∂̄φ]|Kτ |2e−φ ≥ 0.

The last inequality follows since

c(φ) := φτ τ̄ − |∂̄ζ∂τφ|2∂∂̄φ =
MAτ,ζ(φ)

MAζ(φ)
.

This shows that Kτ (z, z) is subharmonic in τ for z fixed. How do we
see that log Kτ is psh?

Replace φ by φ+ ψ(τ), with ψ subharmonic. It follows that eψ(τ)Kτ is
subharmonic for any such ψ. This implies that log Kτ is subharmonic.

To see that log Kτ (z, z) is psh in (τ, z) we give an extension of the
theorem.
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More general version

Let D be as before and consider for each fiber Dτ a compactly
supported complex measure µτ in Dτ .

We say that µτ is holomorphic in τ if

τ →
∫

Dτ

h(τ, z)dµτ (z)

is holomorphic for each h holomorphic in D near Dτ .

Example: µτ = δz , a Dirac mass at a fixed point z. Or, µτ = δf (τ) where
f is holomorphic.
Let

‖µτ‖τ := sup
|h|τ≤1

|
∫

Dτ

h(τ, z)dµτ (z)|
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In the first example
‖µτ‖2τ = Kτ (z, z).

In the second example

‖µτ‖2τ = Kτ (f (τ), f (τ)).

Theorem
Under the same assumptions as before, if µτ is holomorphic,

τ → log ‖µτ‖

is subharmonic.

This implies that log Kτ (z, z) is psh in D – and many other things.
The proof is basically the same.
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Domains that are not cylinders

We may assume that the domain D is strictly pseudoconvex and
smoothly bounded, since any pseudoconvex set can be exhausted by
such domains. (If Ω = ∪Ωj where Ωj is an increasing family of relatively
compact subdomains; KΩ is a decreasing limit of KΩj . Then
D = {(τ, z); ρ(τ, z) < 0} where ρ is smooth, psh and extends a bit
across the boundary. Localizing around a fiber D0, we can find a
cylinder D′ := ∆× U which contains D ∩ (∆× Cn) where ρ is defined
and psh.
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Let kj(s) be an increasing family of convex functions on R, all equal to
zero on the negative half-axis and tending to infinity for s > 0. Let

φj = φ+ kj ◦ ρ.

The crux of the matter is to prove that KU,φj (τ,·) increases to KDτ ,φ. The
crucial step is an approximation result:

Theorem
Let U be pseudoconvex and ρ smooth, exhaustive and psh in U. Let

V = {ρ < 0}.

Then any holomorphic function in V in L2 can be approximated by
holomorphic functions in U in the L2-sense.

The difficulty is that V may not be smoothly bounded.
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Interpretation of the ‘more general version’

Theorem
Under the same assumptions as before

τ → log ‖µτ‖

is subharmonic.

Given D we can think of the family of Hilbert spaces

A2
τ = A2(Dτ , φ) = {h ∈ H(Dτ );

∫
Dτ

|h|2e−φ(τ,·) <∞}

as a bundle of Hilbert spaces, over the base – a subset of the τ -axis.
The measures µτ define a holomorphic section of the dual bundle.

If the norms of any holomorphic section of a vector bundle are
log-subharmonic; the bundle is negatively curved. Hence we have –
roughly that the dual of the bundle A2

τ is negatively curved. This means
that the bundle itself is positively curved.
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Review of holomorphic vector bundles and their
curvature

Locally a holomorphic vector bundle of rank r is E = U ×Cr , U domain
in Cn. A holomorphic section is

s = (s1(z), ...sr (z)) =
∑

sjej .

A hermitian metric is given by a matrix-valued function A = (aj k̄ );
hermitian and positive definite. A connection on E maps sections to
E-valued 1-forms, ( s → Ds) satisfying

Dfs = df ⊗ s + fDs

if f is a function.
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This means that

Ds = D
∑

sjej =
∑

dsj ⊗ ej +
∑

sjDej =
∑

dsj ⊗ ej +
∑

sjωjkek ,

D = d + ω.

(ω is a matrix of 1-forms). The curvature of the connection is an
endomorphism-valued 2-form

Θs = D2s.

One important fact is that, Θ = D2 is a differential operator of order 0:

Θfs = D(df ⊗ s + fDs) = df ∧ Ds + fD2s − df ∧ Ds = f Θs.
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So, D = d + ω and
Θs =

∑
Θjkskej .

One verifies that
Θ = dω + ω ∧ ω.

By definition, D is compatible with the complex structure if ω is of
bidegree (1,0). Moreover, D is said to be compatible with the metric if

d〈s, s′〉 = 〈Ds, s′〉+ 〈s,Ds′〉.

Theorem
There is exactly one connection which is compatible with both the
metric and the complex structure. (It is called the ‘Chern connection’.)
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Indeed, D must satisfy

∂(sAs†) = ∂(s)As† + s∂(A)s†,

if s is holomorphic. Hence

ω = A−1∂A

and
Θ = ∂̄ω + ∂ω + ω ∧ ω = ∂̄ω,

a (1,1)-form. (Use that Aω = ∂A, so

∂A ∧ ω + A∂ω = 0,

whence
ω ∧ ω + ∂ω = 0
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Example: A line bundle (r = 1): A = e−φ,

ω = A−1∂A = −∂φ, Θ = −∂̄∂φ = ∂∂̄φ.

We next look at a consequence of metric compatibility. Let s be a
holomorphic section. Then

∂〈s, s〉 = 〈D1,0s, s〉

and
∂̄∂〈s, s〉 = 〈∂̄D1,0s, s〉 − 〈D1,0s,D1,0s〉.

Hence
∂∂̄〈s, s〉 = −〈Θs, s〉+ 〈D1,0s,D1,0s〉.
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∂∂̄〈s, s〉 = −〈Θs, s〉+ 〈D1,0s,D1,0s〉.
Definition: The Chern curvature is positive in the sense of Griffiths if

i〈Θs, s〉

is a positive (1,1)-form for any s. Negativity is defined in an analogous
way.

Proposition
The Chern curvature is negative if and only if the function

〈s, s〉

is psh in U for any holomorphic s. This is also equivalent to

log〈s, s〉

psh.
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proof

It is clear from the formula on top of the previous slide that negativity
implies that 〈s, s〉 is psh. Conversely, this implies negativity since we
may choose s so that D1,0s = 0 at any given point.
Since we may multiply s by any holomorphic function, this implies that
even its log is psh.
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Dual bundles

Given a vector bundle E , its dual bundle E∗ is again a vector budle
whose fibers are the duals of the fibers of E . In our simplified local
picture, E∗ is again U × Cr , but with a different norm:

‖t‖z = sup
‖s(z)‖=1

|s · t(z)|.

One verifies that the curvature of the dual is negative if and only if the
curvature of the bundle is positive (check the case r = 1!).
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Complex Prekopa III; ‘positivity of direct images’

Let X be a complex Kahler manifold and

p : X → Y

be a (holomorphic) smooth proper fibration of relative dimension n.
This means that p is surjective, has surjective differential and all fibers
XY := p−1 are smooth manifolds. Let (L,e−φ) be a holomorphic
hermitian line bundle over X with semipositive curvature i∂∂̄φ ≥ 0. For
each y in the base, let

Ey = {u ∈ Hn,0(Xy ,L)}

equipped with the metric

‖u‖2 := cn

∫
Xy

u ∧ ūe−φ.
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Then...

Theorem
Ey are the fibers of a holomorphic vector bundle over Y , E. This vector
bundle, with its metric, has nonnegative curvature (in the sense of
Griffiths and even in the stronger sense of Nakano). Along any
complex one-dimensional curve in the base

i〈Θu,u〉y ≥ cn

∫
Xy

c(φ)u ∧ ūe−φ,

where, as before,

“c(φ) :=
MAτ,ζ(φ)

MAζ(φ)

′′
.
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Terminology

On X we have the sheaf, F , of fiberwise holomorphic (n,0)-forms, or
equivalently, the sheaf of sections of KX/Y + L, where
KX/Y = KX − p∗KY is the relative canonical bundle. Given a sheaf F
over X , we get a direct image sheaf

p∗(F)

on the base Y . The sections of the direct image over an open set U in
the base are by definition the sections of F over p−1(U). In this case,
the direct image sheaf is ‘locally free’, meaning that it is the sheaf of
sections of a vector bundle. This vector bundle is E . Abusing language

E = p∗(KX/Y + L).
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Griffiths theorem

Griffiths proved the positivity of direct images in the case when L is
trivial, with a different method. His motivation was also different,
coming from generalization of period maps on Riemann surfaces.

Note first that all fibers Xy are diffeomorphic (which is not the case in
the non-proper setting!), but not biholomorphic. One is studying the
variations of complex structure on a fixed smooth manifold.
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Cylinder case

We assume X = X ×∆ and that L is the pullback of a bundle over X ;
so the same on all fibers. We can think of the metric on L over X as a
(complex) curve of metrics

τ → φτ

with τ ∈ ∆. If τ → uτ is a holomorphic section of E

∂τ 〈uτ ,uτ 〉 =

∫
X
∂φτ uτ ∧ ūτe−φτ .

Hence, the connection on E should be D1,0uτ = ∂φτ uτ , and

ωuτ = −(∂τφτ )uτ ,

or rather its projection on holomorphic forms; a Toeplitz operator.
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(∂2/∂τ∂τ̄)〈uτ ,uτ 〉 = −cn

∫
X
φτ τ̄u ∧ ūe−φ + ‖φ̇τu‖2.

Decompose the last term in two orthogonal parts:

‖φ̇τu‖2 = ‖D1,0u‖2 + ‖(φ̇τ )⊥‖2.

If D1,0u = 0 at one given τ

(∂2/∂τ∂τ̄)〈uτ ,uτ 〉 = −cn

∫
X
φτ τ̄u ∧ ūe−φ + ‖(φ̇τu)⊥‖2 = −〈Θu,u〉.

Using Hormander’s theorem to estimate the orthogonal part, we get
the theorem.
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Philosophical interpretation

Consider the bundle E as a subbundle of the bundle F with fibers

L2
(n,0)(X ,e−φτ )

(non-holomorphic (n,0)-forms). The first term in the curvature formula

cn

∫
X
φτ τ̄u ∧ ūe−φ

is the curvature of F . The second

‖(φ̇τu)⊥‖2

is the second fundamental form of the subbundle E in F .
The curvature of E is bounded from below by the Toeplitz operator with
symbol c(φ).
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Mabuchi space

ML(X ) = {φ; e−φ metric on L; ωφ := i∂∂̄φ > 0}

This is our analog of the space of convex functions in Rn.

Tφ(M) = C∞(X ,R).

Norm on the tangent space:

‖u‖2φ :=

∫
X
|u|2ωn

φ/n!.
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Let t → φt be a curve inM. To find the Riemannian connection onM
we look at

2〈Dφ̇φ̇, φ̇〉 = (d/dt)‖φ̇‖2 =

2
∫

X
φ̈φ̇ωn

φ/n! +

∫
X
|φ̇|2i∂∂̄φ̇ ∧ ωn−1

φ /(n − 1)!.

In the last term we can integrate by parts (φ is not a function, but φ̇ is a
function) and get

−2
∫

X
φ̇[φ̈− |∂φ̇|2

∂∂̄φ
]ωn
φ/n!.

Hence (?)
Dφ̇φ̇ = c(φ).
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geodesics

Let, for τ = t + is,
φ(τ, z) = φτ (z) = φt (z).

It is defined for τ in a strip. We see that φt is a geodesic if and only if
φ(τ, z) lies inM for any fixed τ , is psh, and satisfies the homogeneous
complex Monge-Ampere equation.

We say that φt is a generalized geodesic if it is psh, locally bounded,
and satisfies the HCMA. It is a subgeodesic is it is locally bounded and
psh.

A theorem of X.X. Chen (... and Blocki, Tosatti-Weinkove) says that
any two points inM can be connected with a generalized geodesic of
class C1,1
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Donaldson’s quantization

Let E = H0(X .L). Let
H

be the space of Hilbert norms on E ( i.e. Hermitian (n × n) matrices,
given a base). For any φ ∈M we get an element in H,

‖u‖2φ :=

∫
|u|2e−φωn

φ/n!.

This map fromM to H is called Hilb; φ→ Hilb(φ).

We also get a map in the opposite direction, called FS (for
Fubini-Study). This is essentially the Bergman kernel.

One can think of the map Hilb as a counterpart of the Legendre
transform, and FS as the inverse Legendre transform.
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The FS-map

Let ‖ · ‖ ∈ H. Then we get an element inM; ψ, by

|u|2e−ψ(x) :=
|u|2(x)

sup‖u′‖2=1 |u′|2(x)
.

In other words
ψ(x) = log sup

‖u′‖2=1
|u′|2(x).

Notice that the Bergman kernel is not a function, but a metric on L.

The idea is that (if we replace L by kL and let k →∞; FS ◦ Hilb should
go to the identity map. This is a sort of approximation of our infinite
dimensional manifoldM by finite dimensional objects.
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Bergman kernel asymptotics

...due to Bouche, Tian, Zelditch, Catlin...

Let φ ∈M. Let
Bkφ(x) = sup

‖u′‖2
kφ=1
|u′|2(x),

i.e.
log Bkφ = FS ◦ Hilb(kφ).

Theorem

lim
k→∞

Bkφe−kφ = π−n.
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Bergman kernel asymptotic II

Instead of looking at quantization via the Hilbert space H0(X ,L), we
can look at Hn,0(X ,L) = H0(X ,L + KX ) (as before). The Bergman
kernel is then a metric on L + KX . Equivalently it is a metric on L, times
a volume form.

Theorem
In this setting

lim
Bkφe−kφ

dk
=

1
V (L)

(ωφ)n/n!.

Here dk = dim H0(X , kL + KX ) and V (L) is the volume of L, the
constant making the integral of the RHS equal to one.
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Tsuji’s theorem

If KX is positive we can take L = KX . Starting with an arbitrary positive
metric φ1 on KX , we get a Bergman kernel metric φ2 on 2KX . Iterating
we get a sequence of metrics φk on kKX .

Theorem

limk→∞φk/k = φKE ,

the Kahler-Einstein metric on X.
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Idea of proof (first Bergman kernel)

Take a point x in X . Choose local coordinates z, centered at x , and a
local frame of L such that

φ = |z|2 + O(|z|3).

Rescale by z = ζ/
√

k . A small ball around x , |z| < ε corresponds to a
large ball, ζ < ε

√
k . Moreover

kφ(z) = kφ(ζ/
√

k) = ‖ζ|2 + O(1/
√

k),

and
ωn

kφ/n!→ dλ.

The theorem says that, at x , the Bergman kernel tends to the Bergman
kernel of Cn with measure e−|ζ|

2
dλ, at the origin.

26 januari 2024 79 / 113



One more vector bundle

A complex curve τ → φτ gives rise to a metric on the vector bundle

E = E × U.

Warning:This is not the same vector bundle as before - no
(n,0)-forms! Strangely, we have:

Theorem
Let φτ be a (generalized) complex geodesic, i.e. satisfy the HCMA.
Then the induced metric on E has negative curvature.

This is actually a lot simpler than the previous results.
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proof

We need to prove that if uτ is a holomorphic section, then τ → ‖uτ‖2τ is
subharmonic.

‖uτ‖2τ = p∗(|uτ |2e−φ(∂∂̄φ)n/n!),

where we consider all objects as defined on the total space X = X ×U
and p is the projection on U. P∗ is the push-forward – it commutes with
∂ and ∂̄.
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‖uτ‖2τ = p∗(|uτ |2e−φ(∂∂̄φ)n/n!),

Hence
∂̄‖uτ‖2τ = p∗(uτ∂φuτ ∧ e−φ(∂∂̄φ)n/n!),

and

∂∂̄‖uτ‖2τ = p∗(∂φuτ∧∂φuτ∧e−φ(∂∂̄φ)n/n!)+p∗(uτ ∂̄∂φuτ∧e−φ(∂∂̄φ)n/n!)

Since uτ is holomorphic, ∂φ∂̄uτ = 0. Commuting the operators, the last
term is

−p∗(uτuτ ∧ ∂∂̄φ ∧ e−φ(∂∂̄φ)n/n!).

But, this is zero, since φτ solves the HCMA.

Notice that we need a geodesic, whereas before subgeodesic was
enough.
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Donaldson does not (?) consider the negatively curved bundle E , but
only its determinant bundle. This is a line bundle over U, hence trivial
and we can think of its metric as a function

ψ = log det(‖ · ‖2).

He proves that
log det(Hilb(kφ))

tends to the Aubin-Yau energy or Monge-Ampere energy of φ.
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Aubin-Yau energy

E(φ) is defined (up to a constant) by

(d/dt)E(φt ) = −
∫

X
φ̇ωn

φ/n!/V (L).

More explicitly, if φ0 and φ1 are two elements ofM

E(φ1, φ0) =

∫
X

(φ0 − φ1)
n∑
0

ωk
0 ∧ ω

n−k
1 .

The counterpart in the case of bounded domains is∫
D
−φωn

φ/n!,

for φ that vanish on the boundary.
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The other quantization

We can do exactly the same thing for ‘my’ quantization, and get
another function log det. It satisfies the same convergence result; it
also tends to the MA-energy.

Donaldson’s result implies that E is convex along geodesics. My result
implies that it is concave. Hence E is linear along geodesics (not hard
to see directly).
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Fano manifolds

A compact manifold X is Fano if the canonical bundle KX is negatively
curved. Then we can take (in my theorem on direct images) L = −KX
and are led to consider

H0(X ,−KX + KX ) = C.

It has a basis element u = 1 with norm

‖1‖2φ =

∫
X

e−φ.

Theorem

log

∫
X

e−φ

is concave along subgeodesics.
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The Ding functional

is defined by

D(φ) = − log

∫
X

e−φ + E(φ).

Its critical points are given by∫
φ̇e−φ∫
e−φ

=

∫
φ̇ωn

φ/n!

V
,

for all φ̇. Hence
e−φ = Cωn

φ.

This is the Kahler-Einstein equation. The Ding functional is convex
along geodesics.
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The existence problem for KE-metrics in the Fano case amounts to
proving that there are critical points of D. This means roughly that D
tends to infinity at infinity. A theorem of Chen-Donaldson-Sun (Tian)
says that this is so if and only if X ,−KX is ‘stable’ in a certain sense.

The uniqueness for KE-metrics in the Fano case is due to Bando and
Mabuchi:

Theorem
Let ωφ0 = ω0 and ωφ1 = ω1 be two KE-metrics on the Fano manifold X.
Then there is a holomorphic vector field V with flow Fτ , such that

F ∗1 (ω1) = ω0.

Thus KE-metrics are unique modulo Aut0(X ), the identity component
of the automorphism group.
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comparison with negatively curved case

Let X have KX > 0. If φ is a metric on KX ; eφ can be interpreted as a
volume form on X . Then the equation

ωφ = −Ric(ωφ) = i∂∂̄ log(ωn
φ),

means that
eφ = ωn

φ

(adjusting constants). Say φ0 and φ1 are two solutions and look at
φ1 − φ0; a function. It has a max at some x ∈ X , where
i∂∂̄(φ1 − φ0) ≤ 0. Then, from the equation, φ1 − φ0 ≤ 0 at a max,
hence everywhere.

Reversing the role of φ1 and φ0, we see that φ1 = φ0. Hence we have
abslolute uniqueness.
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sketch of proof

Connect φ1 and φ0 with a geodesic. Then D(φt ) is linear along a
geodesic.

Theorem
Let φt be a general (bounded) geodesic. Assume

log

∫
X

e−φt

is linear. Then there is a holomorphic vector field V , with flow Ft such
that F ∗t (ωt ) = ω0.

Obviously this implies BM. Robert Berman gave the first proof of BM
by using the thm in the smooth case. I will sketch the proof of thm in
the smooth case, assuming moreover that there are no non-trivial
holomorphic fields.
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Auxiliary result

Theorem
Let L be a holomorphic line bundle over X with a positively curved
metric φ. Let f be a ∂̄-closed (n,1)-form with values in L.
Let u0 be the minimal solution to ∂̄u = f . Assume ‖u0‖ = ‖f‖. Then
there is a holomorphic (n − 1,0)-form v such that

f = v ∧ ωφ.

The converse also holds.
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proof

There is a ∂̄-closed (n,1)-form α, such that

u0 = ∂̄∗α.

Then
�̄α = f ,

where
�̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

Recall
� = D1,0(D1,0)∗ + (D1,0)∗D1,0.

The fundamental Kodaira-Nakano identity says

�̄ = � + ω ∧ Λ

(Λ is the adjoint of multiplication with ω).
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This implies that all eigenvalues of the elliptic operator �̄ are greater
than or equal to 1. Let ej be a basis of eigenforms ((n,1)) with
eigenvalues λj .

α =
∑

αjej , f =
∑

fjej .

Since �̄α = f , fj = λjαj .

‖u0‖2 = 〈�̄α, α〉 =
∑

λj |αj |2.

‖f‖2 =
∑

λ2
j |αj |2.

Hence, if ‖u0‖2 = ‖f‖2, α is an eigenform with eigenvalue 1, and α = f .
Moreover �α = 0, which gives (D1,0)∗α = 0. Since ∗α = v , v ∧ ω = α,
this gives the theorem.
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end of proof

If we take L = −KX in the previuos theorem, we get a −KX -valued
(n − 1,0-form. This can be identified with a (1,0) vector field. If there
are no holomorphic vector fields except 0, v = 0. I. e., equality never
holds in Hörmander’s theorem.

Now recall the proof of convexity of

t → − log

∫
X

e−φt .

It involved an applications of Hörmander’s estimate. If equality never
holds, we get strict convexity.

26 januari 2024 94 / 113



Additional wonkish remark

Look at a general positive line bundle over X , and the positivity of direct
images in that case. We applied Hormander’s theorem to the equation

∂̄u = ∂̄φ̇ ∧ s =: f

where s ∈ H0(X ,L + KX ). Define

E(φ̇, s) := ‖f‖2 − ‖u0‖2 ≥ 0.

(E is the ‘error’ in Hormander’s estimate).

For fixed s this is a quadratic form in φ̇ ∈ Tφ(M). For fixed φ̇ it is a
quadratic form in s.

A curvature tensor?
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Geodesics in Mabuchi space.

Let φ ∈M(X ; L). Recall that

FS ◦ Hilb(kφ)/k → φ,

by Bergman kernel asymptotics.

H is a symmetric space and as such has a natural metric. Fixing a
basis in H0(X ; L) we can identify elements in H with hermitian
matrices. A curve At in H is then a geodesic if

d
dt

A−1Ȧ = 0

As before we think of At = Aτ , τ = t + is, a complex curve independent
of s.

Then a curve corresponds to a vector bundle metric on
E = H0(X ,L)× U, U a strip in the complex plane. The geodesic
equation says that this metric has zero curvature.
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Convergence of geodesics

Let φ0, φ1 be elements inM, and φt a geodesic connecting them. Let

Hilb(e−kφ0) = Ak
0, Hilb(e−kφ1) = Ak

1.

Connect them with a geodesic Ak
t in Hk . Then we have ( Phong-Sturm,

B)

Theorem

lim FS(Ak
t )/k = φt ,

uniformly at the rate log(k)/k.
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sketch of proof

We replace H0(X , kL) by H0(X , kL + KX ). This simplifies and implies
the original version. Put

ψt ,k := FS(Ak
t )/k .

Then ψt ,k is close to φt for t = 0,1, by Bergman kernel asymptotics.

Moreover, ψt ,k is a subgeodesic. Since φt is the max of all
subsolutions, we get roughly

ψt ,k ≤ φt .

For the opposite direction we use an auxiliary result.
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A maximum principle

Theorem
Let Aτ and Bτ be two metrics on a vector bundle over U; a domain in C.
Assume Aτ has zero curvature and Bτ has positive curvature, and that

Aτ ≤ Bτ

on the boundary of U. Then

Aτ ≤ Bτ

in U.

(Check in the line bundle case!)
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end of proof

By positivity of direct images and the theorem on the previous slide

At ≤ Hilb(kφt ).

Hence
FS(At ) ≥ FS ◦ Hilb(kφt ).

On the other hand, we have, essentially by Bergman kernel
asymptotics, that

FS ◦ Hilb(kφt )/k ≥ φ

modulo a small error. This gives the opposite direction.
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Schwarz symmetrization

Let D be a domain in RN ; f : D → R. Its Schwarz symmetrization is a
radial function

f̂ (x) = φ(|x |)

( with φ increasing) that is equidistributed with f .

This means that
σf (r) := |{f < t}| = σf̂ (t)

for all t .

Equivalently, for any measurable F∫
D

F (f )dx =

∫
B

F (f̂ )dx .
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The Polya-Szego theorem

Note that f̂ is defined in a ball of the same volume as D.

Theorem ∫
D
|∇f̂ |p ≤

∫
B
|∇f |p

for p ≥ 1.

This is related to the isoperimetric inequality. The isoperimetric
inequality is used in the proof.
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Corollary
If for any radial function vanishing on the boundary or having mean
zero,

(

∫
B
|f |q)1/q ≤ C(

∫
B
|∇f |p)1/p,

then the same thing holds for any function in D.

We can also look at ∫
D

ef

instead of Lq-norms. This leads to Moser-Trudinger inequalities.
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Complex version?

We consider a domain in Cn and the Monge-Ampere energy

E(f ) =

∫
D
−f (i∂∂̄f )n/n!

where f vanishes on the boundary and is psh. Is there a Polya-Szego
theorem in this setting?

Q1: Is f̂ psh if f is? No!

Things work better when D is balanced and f is S1-invariant. The next
theorem is joint work with Robert Berman:
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Theorem
Assume D is balanced and f is psh and S1-invariant. Then
1. f̂ is psh.

2. E(f̂ ) ≤ E(f ) holds for all such f if and only if D is an ellipsoid.

I will discuss the proof of the first part.

26 januari 2024 105 / 113



proof of first part

Recall that φ(|z|) is psh if and only if

ψ(s) := φ(es)

is convex. The definition of Schwarz symmetrization gives

σf (r) = |{φ(|z|) < r}| = φ−1(r)2n

if we normalize Lebesgue measure so the the unit ball has volume 1.

ψ−1(t) = log φ−1(t) = (1/2n) log σf (t).

ψ is convex if and only if its inverse ψ−1 is concave. So we need to
prove that

− log σf (t)

is convex.
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Let
D := {(t + is, z); f (z) < t};

a pseudoconvex domain (since f is S1-invariant). Its slices are

Dt = {z; f (z) < t}.

The diagonal Bergman kernel for Dt at the origin is

1
|{f < t}|

.

Hence complex Prekopa implies that log σf (t) is convex (subharmonic
in (t + is) and independent of s).
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Openness conjecture

Theorem
Let f be psh in the ball and suppose∫

B
e−f <∞.

Then there is ε > 0 such that∫
B/2

e−(1+ε)f <∞.

I will prove this when f is S1-invariant.
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Assume first that f (z) = φ(|z|) is radial. As before

ψ(t) = φ(et )

is convex. ∫
B

e−f =

∫ 0

−∞
e−ψ(t)+2ntdt .

We may as well change ψ to ψ(−t) and get∫ −∞
0

e−ψ(t)+2ntdt .

Assume ψ(0) = 0. Then ψ(t)/t is increasing to a limit, a. The integral
converges iff a > 2n, which is an open condition.
By Schwarz symmetrization the same thing holds for S1-invariant
functions.
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Suita conjecture

Let D be a domain in the complex plane, containing the origin. Let
G(z) be the Green’s function of D with pole at the origin. Then

G(z) = log |z|2 − h(z),

where h is harmonic, with boundary values such that G = 0 on the
boundary of D. Let cD = h(0), the Robin constant. The following
theorem of Blocki and Guan-Zhou solved an old conjecture of Suita:

Theorem
Let B be the diagonal Bergman kernel for D. Then

B(0) ≥ e−cD

π
=: Suit .
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proof, by Lempert

Define a domain in C2

D = {(t + is), z); z ∈ D,G(z) < t}.

Let
Dt = {z ∈ D; G(z) < t}

be its slices, and Bt (0) the diagonal Bergman kernel of Dt at the origin.

Then t → log Bt is convex on (−∞,0).

When t = 0, Dt = D. When t is close to −∞, Dt is close to the disc

∆t = {|z|2 < et+cD}.

Hence Bt is asymptotic to

e−t−cd

π
= e−tSuit .
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It follows that
u(t) := log Bt + t

is convex and bounded on the negative half-axis. Therefore it
increases. Hence

log B0 ≥ lim
t→−∞

u(t) = log Suit ,

which gives the theorem.
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Thanks!
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