BERGISCHE UNIVERSITÄT WUPPERTAL

21.07.17

Fakultät 4 - Mathematik und Naturwissenschaften

Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de

Probeklausur zur Analysis 2, SoSe 2017

Hinweis Die Lösungen werden im Tutorium am 26.07. besprochen.

Aufgabe 1 (12 P)

- (a) (2 P) Sei A eine Menge. Wie lautet die Definition einer Metrik $d: A \times A \to \mathbb{R}$ auf A?
- (b) (6 P) Sei d eine Metrik auf \mathbb{R}^n . Zeigen Sie, dass durch

$$\delta((X_1, X_2), (Y_1, Y_2)) := \max\{d(X_j, Y_j) : j = 1, 2\}$$

auf dem Raum $(\mathbb{R}^n)^2 = \mathbb{R}^n \times \mathbb{R}^n$ eine Metrik definiert wird.

(c) (4 P) Zeigen Sie, dass die Menge $U := \{(x,y) \in \mathbb{R}^2 : |x| < y^2\}$ offen ist (bezüglich der Euklidischen Metrik auf \mathbb{R}^2).

Lösungen zu Aufgabe 1

- (a) Eine Abbildung $d: A \times A \to \mathbb{R}$ heißt Metrik, wenn folgende Axiome gelten:
 - (i) Für alle $x, y \in A$ gilt $d(x, y) \ge 0$. Es gilt d(x, y) = 0 genau dann, wenn x = y.
 - (ii) d(x,y) = d(y,x) für alle $x, y \in A$.
 - (iii) $d(x,z) \le d(x,y) + d(y,z)$ für alle $x,y,z \in A$.
- (b) Es müssen die Axiome aus (a) überprüft werden.
 - zu (i) Seien $X_1,X_2,Y_1,Y_2\in\mathbb{R}^n$ gegeben. Dann gilt $d(X_j,Y_j)\geq 0$ für j=1,2 und damit folgt $\delta((X_1,X_2),(Y_1,Y_2))\geq 0$. Außerdem gilt

$$\delta((X_1, X_2), (Y_1, Y_2)) = 0 \Leftrightarrow d(X_j, Y_j) = 0 \ \forall j = 1, 2$$

$$\Leftrightarrow X_j = Y_j \ \forall j = 1, 2$$

$$\Leftrightarrow (X_1, X_2) = (Y_1, Y_2).$$

zu (ii) Wegen der Symmetrie von d folgt

$$\begin{split} \delta((X_1, X_2), (Y_1, Y_2)) &= \max\{d(X_j, Y_j) : j = 1, 2\} \\ &= \max\{d(Y_j, X_j) : j = 1, 2\} \\ &= \delta((Y_1, Y_2), (X_1, X_2)) \end{split}$$

für alle $X_1, X_2, Y_1, Y_2 \in \mathbb{R}^n$.

(iii) Für alle $X_1, X_2, Y_1, Y_2, Z_1, Z_2 \in \mathbb{R}^n$ gilt

$$\delta((X_1, X_2), (Z_1, Z_2)) = \max\{d(X_j, Z_j) \mid j = 1, 2\}$$

$$\leq \max\{d(X_j, Y_j) + d(Y_j, Z_j) \mid j = 1, 2\}$$

$$\leq \max\{d(X_j, Y_j) \mid j = 1, 2\} + \max\{d(Y_j, Z_j) \mid j = 1, 2\}$$

$$= \delta((X_1, X_2), (Y_1, Y_2)) + \delta((Y_1, Y_2), (Z_1, Z_2))$$

nach der Dreieckungleichung von d.

(c) Sei $A:=\mathbb{R}^2\setminus U$, d.h. das Komplement von U in \mathbb{R}^2 . Damit ist U genau dann offen, wenn A abgeschlossen ist. Wir wollen nun die Abgeschlossenheit von A zeigen. Sei dazu eine Folge $((x_n,y_n))_{n\in\mathbb{N}}$ in A mit Grenzwert $(x_0,y_0)\in\mathbb{R}^2$ gegeben. Für alle $n\in\mathbb{N}$ definieren wir $a_n:=|x_n|-y_n^2$. Damit folgen $a_n\geq 0$ für alle $n\in\mathbb{N}$ und

$$a_0 := \lim_{n \to \infty} a_n = |\lim_{n \to \infty} x_n| - \lim_{n \to \infty} y_n^2 = |x_0| - y_0^2.$$

aufgrund der Stetigkeit von $|\cdot|$ und Polynomen. Somit gilt auch $a_0 \ge 0$, weshalb schließlich $(x_0,y_0) \in A$ resultiert. Demnach ist A abgeschlossen, also U offen.

Alternative: Definiere $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x,y) := |x| - y^2$. Sei zudem ein beliebiger Punkt $(x_0,y_0) \in U$ gegeben. Demnach gilt $f(x_0,y_0) < 0$, also

$$\varepsilon := -\frac{1}{2}f(x_0, y_0) > 0.$$

Weil f stetig ist, existiert ein $\delta > 0$, so dass für alle Punkte $(x,y) \in B((x_0,y_0),\delta)$ die Ungleichung

$$f(x,y) - f(x_0,y_0) \le |f(x,y) - f(x_0,y_0)| < \varepsilon$$

gilt. Für alle $(x,y) \in B((x_0,y_0),\delta)$ gilt demnach

$$f(x,y) < \varepsilon + f(x_0, y_0) = \frac{1}{2}f(x_0, y_0) < 0,$$

we shalb $B((x_0,y_0),\delta)\subset U$ folgt. Also ist U offen.

Aufgabe 2 (14 P)

- (a) (2 P) Sei $f: \mathbb{R}^n \to \mathbb{R}$ total differenzierbar im Punkt x_0 . Wie kann man die Richtungsableitung von f an der Stelle x_0 in Richtung $v \in \mathbb{R}^n$ bestimmen?
- (b) (4 P) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{x^3 + y^2}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Ist f im Ursprung total differenzierbar? Für welche $v \in \mathbb{R}^2$, $v \neq 0$, existiert $D_v f(0,0)$?

(c) (8 P) Bestimmen Sie die Extremstellen der Funktion

$$f(x,y) = x^3 + xy^2 - 12x - y^2$$

Lösungen zu Aufgabe 2

(a) Die Richtungsableitung einer Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ an der Stelle x_0 in Richtung $v \in \mathbb{R}^n$ ist definiert durch

$$D_v f(x_0) := \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}.$$

Weil f sogar total differenzierbar ist, können wir alternativ auch $D_v f(x_0) = \langle Df(x_0), v \rangle$ berechnen.

(b) Wenn f in (0,0) total differenzierbar wäre, müssten die partiellen Ableitungen in x- und y-Richtung existieren. Es gilt zwar

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^3}{|t|t} = \lim_{t \to 0} t \frac{t}{|t|} = 0,$$

weil $\frac{t}{|t|}$ für $t \neq 0$ beschränkt ist, aber für $t \neq 0$ gilt

$$\frac{f(0,t) - f(0,0)}{t} = \frac{t^2}{|t|t} = \frac{t}{|t|}.$$

Nun folgt zum Beispiel mit den Nullfolgen $(1/n)_{n\in\mathbb{N}}$ und $(-1/n)_{n\in\mathbb{N}}$, dass die partielle Ableitung in Richtung y nicht existiert. Also ist f im Ursprung nicht total differenzierbar.

Sei nun ein $v=(v_1,v_2)\in\mathbb{R}^2$ mit $v\neq(0,0)$ gegeben. In Anlehnung an die Definition aus Teil (a) berechnen wir zunächst für $t\neq0$

$$\frac{f((0,0)+tv)-f(0,0)}{t} = \frac{t^3v_1^3 + t^2v_2^2}{\sqrt{t^2v_1^2 + t^2v_2^2}t} = \frac{t^2v_1^3 + tv_2^2}{|t||v|} = \frac{t}{|t|} \frac{tv_1^3 + v_2^2}{|v|}.$$

Für $v_2 = 0$ folgt also

$$D_v f(0,0) = \lim_{t \to 0} t \frac{t}{|t|} \frac{v_1^3}{|v|} = 0,$$

also existiert $D_v f(0,0)$. Für $v_2 \neq 0$ gilt dagegen

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\left|\frac{1}{n}\right|} \frac{\frac{1}{n}v_1^3 + v_2^2}{|v|} = \frac{v_2^2}{|v|} \neq -\frac{v_2^2}{|v|} = \lim_{n \to \infty} \frac{-\frac{1}{n}}{|-\frac{1}{n}|} \frac{-\frac{1}{n}v_1^3 + v_2^2}{|v|},$$

weshalb $D_v f(0,0)$ in diesem Fall nicht existiert.

(c) Die Funktion ist als Polynom unendlich oft differenzierbar auf ihrem offenen Definitionsbereich. An der Stelle $(x,y)\in\mathbb{R}^2$ berechnen wir zunächst den Gradienten

$$\nabla f(x,y) = (3x^2 + y^2 - 12, 2xy - 2y)$$

und die Hesse-Matrix

$$H_f(x,y) = \begin{pmatrix} 6x & 2y \\ 2y & 2x-2 \end{pmatrix}.$$

Nun bestimmen wir mittels $\nabla f(x,y)=(3x^2+y^2-12,2y(x-1))=(0,0)$ die kritischen Punkte. Aus der zweiten Gleichung folgt, dass x=1 oder y=0 gilt. Im Fall x=1 wird die erste Gleichung zu $y^2=9$, weshalb (x,y)=(1,3) und (x,y)=(1,-3) kritische Punkte sind. Im Fall y=0 folgt aus der ersten Gleichung $x^2=4$, weshalb (x,y)=(2,0) und (x,y)=(-2,0) ebenfalls kritische Punkte sind. Als nächstes setzen wir die kritischen Punkte in die Hesse-Matrix ein. Es gilt

$$H_f(1,3) = \left(\begin{array}{cc} 6 & 6 \\ 6 & 0 \end{array}\right),$$

Der linke obere Eintrag ist echt positiv, und $\det H_f(1,3) = -36$ echt negativ. Somit ist $H_f(1,3)$ indefinit und f hat in (1,3) kein lokales Extremum.

Alternativ berechnen wir

$$\langle (x_1, x_2), H_f(1, 3)(x_1, x_2)^t \rangle = 6x_1(x_1 + 2x_2)$$

Setzen wir $(x_1,x_2)=(1,-1)$, ist dies gleich -6<0. Daher kann $H_f(1,3)$ nicht positiv definit sein. Setzen wir $(x_1,x_2)=(1,0)$, ist dies gleich 6>0. Daher kann $H_f(1,3)$ nicht negativ definit sein. Somit ist $H_f(1,3)$ indefinit und f hat in (1,3) kein lokales Extremum. Analog folgt die Indefinitheit von

$$H_f(1, -3) = \left(\begin{array}{cc} 6 & -6 \\ -6 & 0 \end{array}\right)$$

mittels der Vektoren (1,0) und (1,1), weshalb f in (1,-3) ebenfalls kein lokales Extremum besitzt.

Des Weiteren hat

$$H_f(2,0) = \left(\begin{array}{cc} 12 & 0\\ 0 & 2 \end{array}\right)$$

die Eigenwerte 12>0 und 2>0. Alternativ können auch die führenden Hauptminoren betrachtet werden, d.h. hier der obere linke Eintrag 12>0 und $\det H_f(2,0)=24>0$. Demnach ist $H_f(2,0)$ positiv definit, also nimmt f ein lokales Minimum in (2,0) an. Oder wir berechnen

$$\langle (x_1, x_2), H_f(2, 0)(x_1, x_2)^t \rangle = 12x_1^2 + 2x_2^2 > 0$$

für alle $(x_1, x_2) \neq (0, 0)$. Daher ist $H_f(2, 0)$ positiv definit.

Zuletzt hat

$$H_f(-2,0) = \left(\begin{array}{cc} -12 & 0\\ 0 & -6 \end{array}\right)$$

die Eigenwerte -12 < 0 und -6 < 0. Alternativ kann ebenfalls über die führenden Hauptminoren argumentiert werden, d.h. hier über den oberen linken Eintrag -12 < 0 und $\det H_f(-2,0) = 72 > 0$. Damit ist $H_f(-2,0)$ negativ definit und f nimmt in (-2,0) ein lokales Maximum an.

Oder wir berechnen

$$\langle (x_1, x_2), H_f(-2, 0)(x_1, x_2)^t \rangle = -12x_1^2 - 2x_2^2 < 0$$

für alle $(x_1, x_2) \neq (0, 0)$. Daher ist $H_f(-2, 0)$ negativ definit.

Aufgabe 3 (14 P)

- (a) (2 P) Sei $f:U\to\mathbb{R}$ eine Funktion auf einer offenen Menge $U\subset\mathbb{R}^n$. Welche Bedingungen an die Funktion f garantieren, dass ihre Hesse-Matrix exisitiert und symmetrisch ist?
- (b) (6 P) Sei $C=\{(x,y,z)\in\mathbb{R}^3: xy-z=0\}\cap\{x^2+y^2=2\}$. Was ist der Abstand von C zum Ursprung?
- (c) (6 P) Zeigen Sie, dass man das folgende System von Gleichungen nahe dem Punkt $(x_0,y_0,u_0,v_0)=(1,1,1,0)$ nach (u,v)=g(x,y) auflösen kann.

$$-x + y^2 + 2uv = 0$$
$$x^2 - xy + y^2 - u^2 + v^2 = 0$$

Wie lautet das Differential von g in (1,1)?

Lösungen zu Aufgabe 3

- (a) Wenn eine Funktion $f\colon U\to\mathbb{R}$ zweimal stetig partiell differenzierbar ist, existiert die Hesse-Matrix von f nicht nur, der Satz von Schwarz sagt zudem noch aus, dass diese Matrix symmetrisch ist.
- (b) Der Abstand von C zum Ursprung ist gegeben durch

$$d(0,C) = \inf\{|(x,y,z)| \mid (x,y,z) \in C\}.$$

Wir müssen also die Euklidische Norm $|(x,y,z)|=\sqrt{x^2+y^2+z^2}$ unter den Nebenbedingung

$$g(x, y, z) = \begin{pmatrix} g_1(x, y, z) \\ g_2(x, y, z) \end{pmatrix} := \begin{pmatrix} xy - z \\ x^2 + y^2 - 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

zu minimieren. Es reicht zur leichteren Berechnung auch die stetig differenzierbare Funktion

$$f(x, y, z) := |(x, y, z)|^2 = x^2 + y^2 + z^2$$

zu minimieren. Für diese gilt

$$\nabla f(x, y, z) = (2x, 2y, 2z)$$

in jedem Punkt $(x,y,z)\in\mathbb{R}^3$. Nun ist $g\colon\mathbb{R}^3\to\mathbb{R}^2$ stetig differenzierbar und es gilt $C=\{g=0\}$. Für Punkte $(x,y,z)\in C$ gilt zudem $x\neq 0$ oder $y\neq 0$, weshalb der Rang von

$$Dg(x,y,z) = \left(\begin{array}{ccc} y & x & -1\\ 2x & 2y & 0 \end{array}\right)$$

2 beträgt und somit voll ist.

Für Punkte $(x,y,z)\in C$ folgt aus $g_2(x,y,z)=0$ bereits $|x|\leq \sqrt{2}$ und $|y|\leq \sqrt{2}$. Zusammen mit $g_1(x,y,z)$ folgt demnach $|z|=|xy|\leq 2$, weshalb C beschränkt ist. Da g stetig ist, ist $C=g^{-1}(\{0\})$ zudem abgeschlossen, also nach dem Satz von Heine-Borel sogar kompakt. Daher nimmt die stetige Funktion $f|_C$ ein Minimum in einem Punkt $(x,y,z)\in C$ an. Nach dem Satz über die Lagrange-Multiplikatoren existieren $\lambda,\mu\in\mathbb{R}$ mit

$$(2x, 2y, 2z) = \lambda(y, x, -1) + \mu(2x, 2y, 0).$$

Aus der letzten Komponente folgt $\lambda=-2z$ und zusammen mit xy=z werden die übrigen zwei Gleichungen zu

$$x = -xy^2 + \mu x,$$
 $y = -x^2y + \mu y.$

Damit gilt einerseits x=0 oder $1+y^2-\mu=0$ und andererseits y=0 oder $1+x^2-\mu=0$. Im Fall x=0 folgt aus $x^2+y^2=2$ bereits $y=\sqrt{2}$ oder $y=-\sqrt{2}$. Des Weiteren gilt z=xy=0. Damit sind

$$v_1 := (0, \sqrt{2}, 0)$$

 $v_2 := (0, -\sqrt{2}, 0)$

mögliche Punkte.

Sei nun $x \neq 0$. Falls zudem y = 0 gilt, folgen analog zum vorherigen Fall

$$v_3 := (\sqrt{2}, 0, 0)$$

 $v_4 := (-\sqrt{2}, 0, 0)$

als mögliche lokale Extrema. Falls ebenfalls $y \neq 0$ gilt, folgt

$$1 + y^2 = \mu = 1 + x^2,$$

also $x^2 = y^2$. Daher resultiert aus $x^2 + y^2 = 2$

$$x=1$$
 oder $x=-1$.

Dies führt mittels $x^2 = y^2$ und xy = z zu den möglichen Punkten

$$v_5 := (1, 1, 1)$$

 $v_6 := (1, -1, -1)$
 $v_7 := (-1, 1, -1)$
 $v_8 := (-1, -1, 1)$

Nun gelten

$$f(v_1) = \ldots = f(v_4) = 2 < 3 = f(v_5) = \ldots = f(v_8)$$

und weil $f|_C$ in einem der Punkte v_1,\ldots,v_8 ein Minimum annehmen muss, geschieht dies in den Punkten v_1,\ldots,v_4 . Damit ist der Abstand zwischen C und dem Ursprung $d(0,C)=\sqrt{2}$.

Alternative: Für Punkte $(x, y, z) \in C$ gilt

$$f(x, y, z) := x^2 + y^2 + z^2 = 2 + z^2 \ge 2,$$

weshalb 2 eine untere Schranke der Menge $\{f(x,y,z) \mid (x,y,z) \in C\}$ ist. Nun ist beispielsweise $(\sqrt{2},0,0) \in C$ und es gilt $f(\sqrt{2},0,0)$. Somit gilt

$$\inf\{f(x, y, z) \mid (x, y, z) \in C\} = 2$$

und es folgt $d(0,C) = \sqrt{2}$.

(c) Definiere $F: \mathbb{R}^4 \to \mathbb{R}^2$ durch

$$F(x, y, u, v) := \begin{pmatrix} -x + y^2 + 2uv \\ x^2 - xy + y^2 - u^2 + v^2 \end{pmatrix}$$

Damit ist F stetig differenzierbar und es gilt

$$DF(x, y, u, v) = \begin{pmatrix} -1 & 2y & 2v & 2u \\ 2x - y & 2y - x & -2u & 2v \end{pmatrix}.$$

Da die Matrix

$$\frac{\partial F}{\partial(u,v)}(1,1,1,0) = \begin{pmatrix} 0 & 2\\ -2 & 0 \end{pmatrix}$$

invertierbar ist, kann der Satz über implizite Funktion angewendet werden. Es existieren somit offene Umgebungen $U\subset\mathbb{R}^2$ von (1,1) und $V\subset\mathbb{R}^2$ von (1,0) sowie eine stetig differenzierbare Funktion $g\colon U\to V$ mit

$$\{(x, y, u, v) \in \mathbb{R}^4 \mid F(x, y, u, v) = 0\} \cap (U \times V) = \{(x, y, u, v) \in U \times V \mid (u, v) = g(x, y)\}$$

Um schließlich das Differential von g zu bestimmen, benötigen wir

$$\left(\frac{\partial F}{\partial(u,v)}(1,1,1,0)\right)^{-1} = \frac{1}{\det\frac{\partial F}{\partial(u,v)}(1,1,1,0)} \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix}$$

und

$$\frac{\partial F}{\partial (x,y)}(1,1,1,0) = \left(\begin{array}{cc} -1 & 2 \\ 1 & 1 \end{array} \right).$$

Daher gilt nach dem Satz über implizite Funktionen

$$Dg(1,1) = -\left(\frac{\partial F}{\partial(u,v)}(1,1,1,0)\right)^{-1} \cdot \frac{\partial F}{\partial(x,y)}(1,1,1,0) = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1 \end{pmatrix}.$$

Aufgabe 4 (10 P)

(a) (6 P) Berechnen Sie das Volumen des Körpers

$$K := \{(x, y, z) \in \mathbb{R}^3 : (x^2 + y^2 + z^2)^2 \le z\}$$

mit Hilfe von Polarkoordinaten

$$(x, y, z) = \Psi(r, \vartheta) = (r \sin(\vartheta) \cos(\varphi), r \sin(\vartheta) \sin(\varphi), r \cos(\vartheta)).$$

Hinweis: Sie müssen mit Hilfe der Ungleichung, die K definiert, das Parametergebiet $P \subset \mathbb{R}^3$ finden, auf dem Ψ definiert ist. Alternativ können Sie auch Zylinderkoordinaten nehmen oder K als Normalbereich schreiben und das Integral direkt lösen.

(b) (4 P) Lösen Sie die Differentialgleichung

$$y' + \frac{1+y^2}{y(1+x^2)} = 0, \quad y(1) = 1$$

Hinweis: Schreiben Sie die Gleichung in die Form g(y)y'=f(x) und integrieren Sie links nach y und rechts nach x.

Lösungen zu Aufgabe 4

(a) Variante: Normalbereich

Für einen beliebigen Punkt $(x,y,z)\in K$ folgt aus der definierenden Ungleichung bereits $z\in [0,1].$ Somit kann auf beiden Seiten der Ungleichung die Wurzel gezogen werden, weshalb $x^2+y^2+z^2\leq \sqrt{z}$ folgt. Dies führt zu

$$|x| \le \sqrt{\sqrt{z} - y^2 - z^2} \le \sqrt{\sqrt{z} - z^2},$$

wobei die letzte Abschätzung nötig ist, um den maximalen Bereich für x nur in Abhängigkeit von z auszudrücken. Analog folgt schließlich $|y| \leq \sqrt{\sqrt{z} - x^2 - z^2}$, also insgesamt

$$K = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, |x| \le \sqrt{\sqrt{z} - z^2}, |y| \le \sqrt{\sqrt{z} - x^2 - z^2} \right\}.$$

Damit gilt für das Volumen von K

$$|K| = \int_{K} 1 \ d(x, y, z) = \int_{0}^{1} \int_{-\sqrt{\sqrt{z} - z^{2}}}^{\sqrt{\sqrt{z} - z^{2}}} \int_{-\sqrt{\sqrt{z} - x^{2} - z^{2}}}^{\sqrt{\sqrt{z} - x^{2} - z^{2}}} 1 \ dy \ dx \ dz$$

Die Berechnung der Integrale ist wegen der verschachtelten Wurzeln allerdings nicht leicht.

Variante: Zylinderkoordinaten

Wir wählen die Transformation $\Psi \colon (0, +\infty) \times (-\pi, \pi] \times \mathbb{R} \to \mathbb{R}^3$ mittels

$$\left(\begin{array}{c} x\\y\\z\end{array}\right)=\Psi(r,\varphi,h):=\left(\begin{array}{c} r\cos(\varphi)\\r\sin(\varphi)\\h\end{array}\right).$$

In diesen Koordinaten wird die K definierende Ungleichung zu

$$(r^2 + h^2)^2 \le h$$

und analog zu Variante 1 folgt zunächst $0 \le h \le 1$ und anschließend $|r| \le \sqrt{\sqrt{h} - h^2}$. Dies liefert den Normalbereich

$$P := \left\{ (r, \varphi, h) \in (0, +\infty) \times (-\pi, \pi] \times \mathbb{R} \mid 0 \leq h \leq 1, 0 \leq r \leq \sqrt{\sqrt{h} - h^2}, \varphi \in (-\pi, \pi] \right\}$$

mit $\Psi(P) = K$. Mit der Transformationsformel folgt schließlich

$$\begin{split} |K| &= \int_K 1 \; d(x,y,z) \\ &= \int_P \left| \det \Psi'(r,\varphi,h) \right| d(r,\varphi,h) \\ &= \int_0^1 \int_0^{\sqrt{\sqrt{h}-h^2}} \int_{-\pi}^{\pi} r \; d\varphi \; dr \; dh \\ &= \int_0^1 \int_0^{\sqrt{\sqrt{h}-h^2}} 2\pi r \; dr \; dh \\ &= \pi \int_0^1 [r^2]_{r=0}^{\sqrt{\sqrt{h}-h^2}} \; dh \\ &= \pi \int_0^1 \sqrt{h} - h^2 \; dh \\ &= \pi \left[\frac{2}{3} h^{3/2} - \frac{1}{3} h^3 \right]_{h=0}^1 \\ &= \frac{\pi}{3} \end{split}$$

Variante: Polarkoordinaten

Sei $\Psi \colon (0,\infty) \times [0,\pi) \times [0,2\pi) \to \mathbb{R}^3$ gegeben durch

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Psi(r, \vartheta, \varphi) := \begin{pmatrix} r \sin(\vartheta) \cos(\varphi) \\ r \sin(\vartheta) \sin(\varphi) \\ r \cos(\vartheta) \end{pmatrix}.$$

In diesen Koordinaten ist die K definierende Ungleichung durch $r^4 \leq r \cos(\vartheta)$ gegeben. Hieraus folgt zunächst $\vartheta \in [0, \pi/2]$, da $\cos(\vartheta) \geq 0$ gelten muss und anschließend

$$0 \le r \le \sqrt[3]{\cos(\vartheta)}.$$

Mit dem Normalbereich

$$P := \left\{ (r, \vartheta, \varphi) \in (0, \infty) \times [0, \pi) \times [0, 2\pi) \mid 0 \le \vartheta \le \pi/2, 0 \le r \le \sqrt[3]{\cos(\vartheta)} \right\}$$

gilt dann $\Psi(P)=K$. Nach der Transformationsformel gilt somit

$$\begin{split} \int_K 1 \; d(x,y,z) &= \int_P \left| r^2 \sin(\vartheta) \right| d(r,\vartheta,\varphi) \\ &= \int_0^{\pi/2} \int_0^{2\pi} \int_0^{\sqrt[3]{\cos(\vartheta)}} r^2 \sin(\vartheta) \; dr \; d\varphi \; d\vartheta \\ &= \int_0^{\pi/2} \sin(\vartheta) \int_0^{2\pi} \left[\frac{1}{3} r^3 \right]_{r=0}^{\sqrt[3]{\cos(\vartheta)}} \; d\varphi \; d\vartheta \\ &= \frac{1}{3} \int_0^{\pi/2} \sin(\vartheta) \int_0^{2\pi} \cos(\vartheta) \; d\varphi \; d\vartheta \\ &= \frac{1}{3} \int_0^{\pi/2} \sin(\vartheta) \cos(\vartheta) [\varphi]_{\varphi=0}^{2\pi} \; d\vartheta \\ &= \frac{2\pi}{3} \int_0^{\pi/2} \sin(\vartheta) \cos(\vartheta) \; d\vartheta \\ &= \frac{\pi}{3}. \end{split}$$

(b) Wegen der Bedingung y(1)=1 ist die Differentialgleichung wohldefiniert

$$y' = -\frac{1+y^2}{y} \cdot \frac{1}{1+x^2} \quad \Leftrightarrow \quad \underbrace{-\frac{y}{1+y^2}}_{=:g(y)} y' = \underbrace{\frac{1}{1+x^2}}_{=:f(x)}$$

wohldefiniert. Die Differentialgleichung kann nun mittels getrennter Variablen als g(y)y'=f(x) geschrieben werden. Damit sind die Stammfunktionen von g bzw. f gegeben durch

$$G(y) := -\frac{1}{2}\ln(1+y^2) \text{ und}$$

$$F(x) := \arctan(x) + C_1.$$

Ziel ist es nun y(x) so zu bestimmen, dass $G(y(x))=F(x)+C_1$ gilt, wobei $C_1\in\mathbb{R}$ konstant ist. Einsetzen von G und F führt zu der Bedingung

$$-\frac{1}{2}\ln(1+y(x)^2) = \arctan(y(x)) + C_1,$$

welche nach Anwendung der Exponentialfunktion gleichbedeutend mit

$$y(x)^2 = C_2 e^{-2\arctan(x)} - 1 \quad \Leftrightarrow \quad |y(x)| = \sqrt{C_2 e^{-2\arctan(x)} - 1}$$

ist, wobei $C_2=e^{-2C_1}$ ist. Wegen der Forderung y(1)=1 kommt nur die positive Lösung in Frage, d.h.

$$y(x) = \sqrt{C_2 e^{-2 \arctan(x)} - 1}.$$

Weil $\varphi(1)=1$ gelten soll, folgt $C_2=2e^{2\arctan(1)}=2e^{\frac{\pi}{2}}$ und damit

$$y(x) = \sqrt{2e^{-2\arctan(x) + \frac{\pi}{2}} - 1}$$

als Lösung der Differentialgleichung.