BERGISCHE UNIVERSITÄT WUPPERTAL

Fachbereich C Mathematik und Naturwissenschaften

Übungen zur Einführung in die Funktionentheorie SoSe 2015 Übungsblatt 10

Abgabe: 02.07.2015, 14 Uhr

Prof. Dr. Nikolay Shcherbina

Aufgabe 1 Sei $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ die Einheitskreisscheibe, sei $U \subset \mathbb{C}$ offen mit $\overline{\mathbb{D}} \subset U$ und sei $f : U \to \mathbb{C}$ holomorph. Zeigen Sie, dass

$$\left| \int_{-1}^{1} f(x) \, \mathrm{d}x \right| \le \frac{1}{2} \int_{0}^{2\pi} |f(e^{it})| \, \mathrm{d}t.$$

Aufgabe 2 Finden Sie ein kompaktes Dreieck $\triangle \subset \mathbb{C}$ so, dass

$$\int_{\partial \triangle} \bar{z} \, \mathrm{d}z \neq 0,$$

wobei $\partial \triangle$ für einen stetigen, stückweise stetig differenzierbaren Weg entlang des Randes des Dreiecks $\triangle \subset \mathbb{C}$ steht.

Aufgabe 3 Sei $U \subset \mathbb{C}$ offen mit $0 \in U$, und sei $f: U \to \mathbb{R}$ stetig. Beweisen Sie die folgenden Aussagen:

(i)
$$\lim_{r\to 0} \int_0^{2\pi} f(re^{it}) dt = 2\pi f(0).$$

(ii)
$$\lim_{r \to 0} \int_{\partial B(0,r)} \frac{f(z)}{z} dz = 2\pi i f(0)$$

Aufgabe 4 Es sei $\gamma:[0,2\pi]\to\mathbb{C},\ t\mapsto 2e^{it}$. Berechnen Sie die folgenden Integrale mit Hilfe der Cauchy-Integralformel für Kreisscheiben:

(i)
$$\int_{\gamma} \frac{e^z}{(z-1)(z+3)^2} dz$$

(ii)
$$\int_{\mathcal{I}} \frac{\sin(z)}{z+i} \, \mathrm{d}z$$

(iii)
$$\int_{\gamma} \frac{1}{z^2 + (3-i)z - 3i} dz$$