Priv.-Doz. Dr. J. Ruppenthal Dipl.-Math. T. Pawlaschyk

Einführung in die Funktionentheorie (SS 2013) Übungsblatt 5

Aufgabe 1. Es seien r_1 und r_2 die Konvergenzradien von $\sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ und $\sum_{\nu=0}^{\infty} b_{\nu} z^{\nu}$. Zeigen Sie:

- a) Ist $|a_{\nu}| \leq |b_{\nu}|$ für fast alle ν , so ist $r_1 \geq r_2$.
- b) Der Konvergenzradius von $\sum_{\nu=0}^{\infty} (a_{\nu} + b_{\nu}) z^{\nu}$ ist $\geq \min\{r_1, r_2\}$, und der Konvergenzradius von $\sum_{\nu=0}^{\infty} a_{\nu} b_{\nu} z^{\nu}$ ist $\geq r_1 r_2$.

Aufgabe 2. Bestimmen Sie die Konvergenzradien der Potenzreihen (für $k \in \mathbb{Z}$):

$$\sum_{\nu=0}^{\infty} \nu^k z^{\nu} \ , \ \sum_{\nu=1}^{\infty} (\log \nu) z^{\nu} \ , \ \sum_{\nu=0}^{\infty} \frac{(2\nu)!}{2^{\nu} (\nu!)^2} z^{\nu} \ , \ \sum_{\nu=0}^{\infty} \frac{z^{\nu}}{(\nu!)^k}$$

Aufgabe 3. Seien $\sin : \mathbb{C} \to \mathbb{C}$ und $\cos : \mathbb{C} \to \mathbb{C}$ definiert durch

$$\cos(z) = \frac{1}{2} (e^{iz} + e^{-iz})$$
, $\sin(z) = \frac{1}{2i} (e^{iz} - e^{-iz})$.

- a) Stellen Sie cos und sin als Potenzreihen dar.
- b) Bestimmen Sie die Nullstellen von sin.
- c) Zeigen Sie: $\sin\left(z+\frac{\pi}{2}\right)=\cos(z)$, und bestimmen Sie die Nullstellen von cos.
- d) Zeigen Sie: Die Exponentialfunktion exp : $\mathbb{C} \to \mathbb{C}$ ist surjektiv, aber nicht injektiv. Gilt $\exp(z_1) = \exp(z_2)$, so ist $z_1 z_2 = 2k\pi i$ für ein $k \in \mathbb{Z}$.

Hinweis. Bedenken Sie auch die Darstellung $e^z = e^{x+iy} = e^x(\cos y + i\sin y)$.

Aufgabe 4. Entwickeln Sie folgende Funktionen in Potenzreihen um z_0 und geben Sie an, wo die Potenzreihen konvergieren:

- a) $f_1(z) = \frac{z^2}{1-z}$ um $z_0 = 0$.
- b) $f_2(z) = \frac{z+3}{z-2}$ um $z_0 = 0$.
- c) $f_3(z) = e^z \cos(z)$ um $z_0 = 0$.
- d) $f_4(z) = z^3 \text{ um } z_0 = 1.$

Abgabe: Do, 16.05.13 in der Vorlesung.

Homepage: www.kana.uni-wuppertal.de/lehre/ss13/ft