Funktionentheorie

Übungsblatt 9

Prof. Dr. N. Shcherbina, Dr. R. Andrist

Abgabe: 20. Juni 2012

Sofern nicht anders vermerkt, kann bei jeder Teilaufgabe maximal ein Punkt erzielt werden.

1. Es sei $f(z) := \sum_{j=0}^{\infty} a_j z^j$ eine Potenzreihe mit Koeffizienten $a_j \in \mathbb{C}$.

Zeigen Sie: Wenn die Reihe auf ganz \mathbb{C} gleichmäßig konvergiert, dann ist f ein Polynom in z.

Hinweis: In diesem Fall sind die Partialsummenfolgen in \mathbb{C} gleichmäßige Cauchyfolgen.

- **2.** Es sei $z \in G := \mathbb{C} \setminus \mathbb{R}_0^-, \ z = \rho \cdot e^{\varphi i}, \ \rho > 0, \ -\pi < \varphi < \pi.$
 - (a) [2 Punkte] Zeigen Sie, dass durch $\log(z) := \ln \rho + i\varphi$ eine holomorphe Logarithmusfunktion auf G definiert wird.
 - (b) Zeigen Sie, dass durch $g_n(z) := \exp\left(\frac{1}{n}\log(z)\right), \in \mathbb{N}$, auf G eine Funktion mit der Eigenschaft $(g_n(z))^n = z$ definiert wird und geben Sie zu $n \in \mathbb{N}$ jeweils n verschiedene holomorphe Funktionen mit dieser Eigenschaft von g_n an.
 - (c) Zeigen Sie, dass auf \mathbb{C} und auf \mathbb{C}^* keine holomorphe Logarithmusfunktion existiert.
 - (d) Gilt $\log(z \cdot w) = \log(z) + \log(w)$ für $z, w, z \cdot w \in G$?
- 3. Es sei $\gamma:[0,2\pi]\to\mathbb{C},\ t\mapsto 2e^{it}$. Berechnen Sie die folgenden Integrale mit Hilfe der Cauchy-Integralformel für Kreisscheiben:

(a)
$$\int_{\gamma} \frac{e^z}{(z-1)(z+3)^2} dz$$

(b)
$$\int_{\gamma} \frac{\sin(z)}{z+i} \, \mathrm{d}z$$

(c)
$$\int_{\gamma} \frac{1}{z^2 + (3-i)z - 3i} dz$$

4. Finden Sie ein kompaktes Dreieck $\triangle \subset \mathbb{C}$ so, dass

$$\int_{\partial \wedge} \overline{z} \, \mathrm{d}z \neq 0,$$

wobei $\partial \triangle$ für einen stetigen, stückweise stetig differenzierbaren Weg entlang des Randes des Dreiecks $\triangle \subset \mathbb{C}$ steht.

Abgabe: jeweils mittwochs bis 14:15 ins Postfach 103 auf D.10