Bergische Universität Wuppertal

Fachbereich C - Mathematik und Naturwissenschaften

Prof. Dr. G. Herbort

Dipl.-Math. T. Pawlaschyk

25.05.11

SoSe11

Übungen zur Einführung in die Funktionentheorie

Blatt 7

Aufgabe 1 (a) Sei R ein abgeschlossenes, achsenparalleles Rechteck. Zeigen Sie:

$$\operatorname{ind}_{\partial_+ R}(z) = 1$$
, wenn $z \in R^{\circ}$ und $\operatorname{ind}_{\partial_+ R}(z) = 0$, wenn $z \notin R$.

- (b) Sei $G := \mathbb{C} \setminus [0,1]$. Zeigen Sie, dass $f(z) = \frac{1}{z(z-1)}$ auf G eine Stammfunktion besitzt.
- (c) Seien γ ein Weg in $\mathbb{C} \setminus \{0\}$ und $g(z) = z^n$. Zeigen Sie: ind $g \circ \gamma(0) = n \cdot \operatorname{ind}_{\gamma}(0)$.

Aufgabe 2 (Schwarzsches Spiegelungsprinzip)

Sei U_+ eine in der oberen Halbebene $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) \geq 0\}$ offene Teilmenge in \mathbb{C} . Sei $f: U_+ \to \mathbb{C}$ stetig und holomorph auf $U_+ \setminus \mathbb{R}$, so dass f auf $U_+ \cap \mathbb{R}$ nur reelle Werte annimmt. Sei $U:=U_+ \cup U_-$, wobei $U_-:=\{z \in \mathbb{C} : \overline{z} \in U_+\}$. Sei F(z):=f(z) für $z \in U_+$ und $F(z):=\overline{f(\overline{z})}$ für $z \in U_-$. Zeigen Sie, dass F eine Stammfunktion auf U besitzt (und somit dort holomorph ist).

Aufgabe 3 Berechnen Sie die folgenden Wegintegrale.

(a)
$$\int_{\partial_+\Delta(0,2)} \frac{e^z dz}{(z+1)(z-3)^2}$$

(b)
$$\int_{\partial_{+}\Delta(0,2)} \frac{\sin z}{z+i} dz$$

(c)
$$\int_{\partial_+\Delta(1,2)} \frac{e^{iz}}{(z-2)^3} dz$$

Aufgabe 4 Sei $\alpha > 1$. Berechnen Sie:

$$\int_{\partial_{+}\Delta_{1}(0)} \frac{dz}{z^{2} + 2\alpha z + 1} \quad \text{und dann} \quad \int_{0}^{2\pi} \frac{dx}{\alpha + \cos x}.$$

Abgabe: 01.06.11 auf D10, Fach Nr. 104

www.math.uni-wuppertal.de/~herbort www.kana.uni-wuppertal.de