Bergische Universität Wuppertal

Fachbereich C - Mathematik und Naturwissenschaften

Prof. Dr. G. Herbort

Dipl.-Math. T. Pawlaschyk

04.05.11

Übungen zur Einführung in die Funktionentheorie

Blatt 5

SoSe11

Aufgabe 1 Gibt es eine nahe 0 holomorphe Funktion f mit $f(z_n) = w_n$, wobei $z_n = \frac{1}{n}$ und

- (a) $w_n = \begin{cases} 0, & n \text{ ungerade} \\ \frac{1}{n}, & n \text{ gerade} \end{cases}$,
- (b) $w_n = \frac{n}{n+1}$,
- (c) $w_n = \frac{1}{n^2}$,
- (d) $w_n = (-1)^n \frac{1}{n^2}$?

Aufgabe 2 Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion. Seien A, B > 0 und $k \in \mathbb{N}$ mit

$$|f(z)| \le A + B|z|^k.$$

Zeigen Sie: f ist ein Polynom vom Grad $\leq k$.

Aufgabe 3 Sei P ein nicht-konstantes, komplexes Polynom vom Grad n. Sei r > 0.

- (a) Zeigen Sie, dass $K := \{z \in \mathbb{C} : |P(z)| = r\}$ kompakt ist.
- (b) Zeigen Sie, dass $\mathbb{C} \setminus K$ nicht mehr als n Zusammenhangskomponenten besitzt.

Aufgabe 4 (a) Sei f holomorph auf einem Gebiet $G \subset \mathbb{C}$. Zeigen Sie: Nimmt Ref auf G ein lokales Maximum an, so ist f konstant.

(b) Seien f, g holomorphe Funktionen nahe des Abschlusses der Einheitskreisscheibe $\overline{\Delta_1(0)}$. Zeigen Sie, dass dann die Funktion h(z) := |f(z)| + |g(z)| ihr Maximum in $\overline{\Delta_1(0)}$ auf dem Rand $\partial \Delta_1(0)$ annimmt.

Abgabe: Mi, 18.05.11 auf D10, Fach Nr. 104

www.math.uni-wuppertal.de/~herbort www.kana.uni-wuppertal.de