Bergische Universität Wuppertal

Fachbereich C - Mathematik und Naturwissenschaften

Apl. Prof. Dr. G. Herbort

Dipl. Math. T. Pawlaschyk

Übungen zur Einführung in die Funktionentheorie

Blatt 1

SoSe11

Aufgabe 1 Sei $L: \mathbb{C} \to \mathbb{C}$ eine Abbildung.

- (a) Zeigen Sie, dass L genau dann \mathbb{R} -linear ist, wenn es Zahlen $\lambda, \mu \in \mathbb{C}$ gibt, so dass $L(z) = \lambda z + \mu \bar{z}$ für alle $z \in \mathbb{C}$ ist.
- (b) Sei L aus Teil a). Zeigen Sie: L bijektiv $\Leftrightarrow |\lambda|^2 \neq |\mu|^2$.

Aufgabe 2 Skizzieren Sie folgende Mengen:

- (a) $M_1 := \{ z \in \mathbb{C} : |z| \ge |z+i| \},$
- (b) $M_2 := \{ z \in \mathbb{C} : \text{Re}(z^2) = z \},$
- (c) $M_3 := \{ z \in \mathbb{C} : \text{Im}\left(i\frac{1+z}{1-z}\right) > 0 \}.$

Aufgabe 3 Bestimmen Sie jeweils diejenigen $z \in \mathbb{C}$, für die gilt:

- (a) $z^2 = 1 2\sqrt{2}i$
- (b) $z^5 = 1$,
- (c) $z^4 = 8 + 8i$.

Aufgabe 4 Bestimmen Sie die Häufungspunkte der nachstehenden Folgen:

- (a) $z_n = \lambda^n (2+2i)^n$, für $\lambda \in \mathbb{R}$,
- (b) $w_n = \frac{1}{n^4} \text{Im}(i+n)^5$.
- (c) $a_n = \frac{1}{8^n} |(1+i)^n| \cdot |2+2i|^n$

Aufgabe 5 Seien $n \geq 2$ und $a_0 > a_1 > \ldots > a_n > 0$. Zeigen Sie, dass das Polynom $p(z) = \sum_{k=0}^{n} a_k z^k$ auf $\{z \in \mathbb{C} : |z| \leq 1\}$ keine Nullstelle besitzt.

Hinweis: Betrachten Sie das Polynom q(z) = (1-z)p(z) und folgern Sie, dass für eine Nullstelle ζ von p die Ungleichung $|\zeta| \ge 1$ gilt und $|\zeta| = 1$ nicht sein kann.

Abgabe: Do, 21.04.11 bis 18:00 auf D10, Fach Nr. 104

www.kana.uni-wuppertal.de

www.math.uni-wuppertal.de/~herbort