Prof. Dr. N. Shcherbina Dr. J. Ruppenthal

Analysis II (SS 2011) Übungsblatt 7

Aufgabe 1. Gegeben sei eine total differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ $(n \ge 2)$.

- a) Zeigen Sie, dass es zu jedem Punkt $x_0 \in \mathbb{R}^n$ einen Vektor $v \in \mathbb{R}^n \setminus \{0\}$ gibt, so dass die Richtungsableitung $D_v f(x_0)$ verschwindet.
- b) Zeigen Sie, dass aus der Beziehung $Df(x_0) = 0$ für alle $x_0 \in \mathbb{R}^n$ folgt, dass die Funktion f konstant ist.

Aufgabe 2. Konstruieren Sie eine total differenzierbare Abbildung $f : \mathbb{R}^2 \to \mathbb{R}^2$, so dass es zu den beiden Punkten a = (1,2) und b = (2,1) mindestens vier verschiedene Paare (ξ_1, ξ_2) gibt, so dass der Mittelwertsatz

$$f(b) - f(a) = \begin{pmatrix} Df_1(\xi_1) \\ Df_2(\xi_2) \end{pmatrix} (b - a)$$

gilt. Stellen Sie außerdem sicher, dass es keine Paare mit $\xi_1 = \xi_2$ gibt, die den Mittelwertsatz erfüllen.

Aufgabe 3. Gegeben seien zwei Multiindizes $\alpha = (\alpha_1, \dots, \alpha_n)$ und $\beta = (\beta_1, \dots, \beta_n)$. Wir definieren die Relation $\beta \leq \alpha$ als $\beta_i \leq \alpha_i$ für alle $i = 1, \dots, n$. Weiter definieren wir für zwei Multiindizes mit $\beta \leq \alpha$ den Multiindex $\alpha - \beta = (\alpha_1 - \beta_1, \dots, \alpha_n - \beta_n)$. Zeigen Sie, dass für jedes Polynom $P : \mathbb{R}^n \to \mathbb{R}$ mit

$$P(x) = \sum_{|\alpha| \le k} a_{\alpha} x^{\alpha}$$

und jeden Multiindex β die folgende Beziehung gilt.

$$D^{\beta}P(x) = \sum_{|\alpha| \le k, \beta \le \alpha} a_{\alpha} \frac{\alpha!}{(\alpha - \beta)!} x^{\alpha - \beta}$$

Aufgabe 4.

- a) Bestimmen Sie das Taylorpolynom vierten Grades für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x) := e^{x_1 x_2}$ an der Stelle $x_0 = (0, 0)$.
- b) Bestimmen Sie das Taylorpolynom dritten Grades für die Funktion $g: \mathbb{R}^3 \to \mathbb{R}$ mit $g(x) := x_1^3 x_2^2 x_3^1$ an der Stelle $x_0 = (1, 2, 3)$.
- c) Bestimmen Sie das Taylorpolynom zweiten Grades für die Funktion $h : \mathbb{R}^n \to \mathbb{R}$ mit $h(x) := \prod_{i=1}^n x_i$ an der Stelle $x_0 = (1, \dots, 1)$.

Abgabe dieses Blattes muss bis **Mittwoch**, **den 01.06.2011**, **10 Uhr**, in das Postfach Ihrer Übungsgruppe auf Flur D.13 erfolgen.