Die arithmetisch-geometrische Mittel Ungleichung

Seien a_1, \dots, a_n positive reelle Zahlen. Dann gilt $A(a_1, \dots, a_n) \geq G(a_1, \dots, a_n)$, wobei $A(a_1, \dots, a_n) := \frac{1}{n} \sum_{i=1}^n a_i$ das arithmetische und $G(a_1, \dots, a_n) := \left(\prod_{i=1}^n a_i\right)^{1/n}$ das geometrische Mittel genannt werden. Dabei gilt die Gleichheit genau dann, wenn $a_1 = \dots = a_n$ gilt.

Beweis (Ossa) Zeige
$$\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right)^{n} \geq \prod_{i=1}^{n}a_{i}$$
 per Induktion in $n \in \mathbb{N}$

n=1: klar.

$$n=2$$
: $(\frac{1}{2}(a_1+a_2))^2-a_1a_2=\frac{1}{4}(a_1-a_2)^2\geq 0$. Gleichheit gilt genau dann, wenn $a_1=a_2$

 $n-1 \mapsto n$: Sei im Folgenden wenigstens ein a_i von den anderen verschieden und ohne Einschränkung $a_1 = \min(a_1, \dots, a_n)$ sowie $a_n = \max(a_1, \dots, a_n)$. Setze $a := A(a_1, \dots, a_n)$, also gilt $a_1 < a < a_n$.

Sei
$$x := a_1 + a_n - a$$
. Dann ist $xa - a_1a_n = a_1a + a_na - a^2 - a_1a_n = a_1(a - a_n) + a(a_n - a) = (a_n - a)(a - a_1) > 0$ (*). Ergo $xa > a_1a_n$.

Definiere $b_1 := x$ und $b_j := a_j$, 2 < j < n.

$$a_{1} \cdots a_{n} = a_{1} a_{n} b_{2} \cdots b_{n-1} < ax b_{2} \cdots b_{n-1} = ab_{1} b_{2} \cdots b_{n-1}$$

$$\leq a \left(\frac{1}{n-1} (b_{1} + \cdots + b_{n-1})\right)^{n-1} \text{ nach Induktions vor aussetzung}$$

$$= a \left(\frac{1}{n-1} (a_{1} + a_{n} - a + a_{2} + \cdots + a_{n-1})\right)^{n-1} = a \left(\frac{1}{n-1} (a_{1} + \cdots + a_{n} - a)\right)^{n-1}$$

$$= a \left(\frac{1}{n-1} (na - a)\right)^{n-1} = aa^{n-1} = a^{n}$$

Bemerkung Gilt $a_1 = \cdots = a_n$, so wird aus der Ungleichung (*) eine Gleichheit. Dies hat zur Folge, dass < und \le aus der Ungleichungskette zu = werden. Damit erhält man die gewünschte Behauptung.

Folgerung aus der AGM-Ungleichung

Sind a_1, \dots, a_n vorgegebene und b_1, \dots, b_n beliebige positive Zahlen mit $\sum_{i=1}^n a_i = \sum_{i=1}^n a_i$

$$\sum_{i=1}^{n} b_i$$
, so gilt:

$$a_1 = \dots = a_n \iff \prod_{i=1}^n a_i \ge \prod_{i=1}^n b_i$$

Gilt $b_i \neq b_j$ für ein i und ein j, so folgt $\prod_{i=1}^n a_i > \prod_{i=1}^n b_i$.

Bemerkung Die Äquivalenz ist so zu verstehen, dass die b_i beliebig sind unter der Voraussetzung $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$. Sind also nicht alle a_i gleich, so gibt es b_i mit

$$\prod_{i=1}^{n} a_i < \prod_{i=1}^{n} b_i$$

Der Beweis findet sich beispielsweise in Walter, Analysis I, S. 47/48.