Wir wollen mit Hilfe der Überdeckungseigenschaft zeigen: [0, 1] ist kompakt.

Anders als im Tutorium angesetzt, klappt dies nicht, indem man zu einer beliebigen offenen Überdeckung eine endliche Teilüberdeckung findet. Stattdessen beweisen wir es durch einen Widerspruch:

Angenommen, es gibt eine offene Übedeckung $\{U_i\}_{i\in I}$ von [0,1], so dass es keine endliche Teilübedeckung gibt.

Für mindestens eins der beiden Intervalle $[0, \frac{1}{2}]$ und $[\frac{1}{2}, 1]$ kann es dann auch keine endliche Teilüberdeckung geben. Wir wählen ein $a_1 \in \{0, \frac{1}{2}\}$, so dass $[a_1, a_1 + \frac{1}{2}]$ keine endliche Teilüberdeckung besitzt. Dieses Verfahren setzen wir rekursiv fort: Für jede natürliche Zahl n wählen wir ein $a_n \in \{a_{n-1}, a_{n-1} + \frac{1}{2^n}\}$, so dass $[a_n, a_n + \frac{1}{2^n}]$ keine endliche Teilüberdeckung besitzt.

Dann ist (a_n) eine monton wachsende Folge, welche durch 1 von oben beschränkt wird $(\sum_{n=1}^{\infty} \frac{1}{2^n} = 1)$. Nach dem Satz von der montonen Konvergenz gibt es ein $a \in [0,1]$ mit $\lim_{n\to\infty} a_n = a$. Da $[a_{n_0}, a_{n_0} + \frac{1}{2^{n_0}}]$ abgeschlossen ist und $a_n \in [a_{n_0}, a_{n_0} + \frac{1}{2^{n_0}}]$ für alle $n \ge n_0$ ist, ist $a \in [a_{n_0}, a_{n_0} + \frac{1}{2^{n_0}}]$.

Für a gibt es mindestens ein $i \in I$, so dass $a \in U_i$ ist. Insbesondere ist a ein innerer Punkt von U_i , d.h. es gibt ein $\varepsilon > 0$ mit $(a - \varepsilon, a + \varepsilon) \subset U_i$. Sei $m \in \mathbb{N}$ so groß, dass $\frac{1}{2^m} < \varepsilon$ ist. Dann gilt $|x - a| \leq \frac{1}{2^m} < \varepsilon$ für alle $x \in [a_m, a_m + \frac{1}{2^m}]$; also ist $x \in U_i$. Deswegen wird $[a_m, a_m + \frac{1}{2^m}]$ von U_i überdeckt, insbesondere gibt es eine endliche Teilüberdeckung. Das widerspricht jedoch der Wahl von $a_m \not = 0$