BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

Übungen zur Analysis II WS 2011/2012 Übungsblatt 11

Abgabe: 18.01.2012 10 Uhr

Prof. Dr. Hartmut Pecher

Aufgabe 1 Bestimmen Sie mit dem Verfahren von Picard-Lindelöf die Lösung des Differenzialgleichungssystems y' = f(x, y) mit y(0) = (-1, 0), wobei $f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ durch $f(x, y_1, y_2) := (-y_1, y_1 - y_2)$ gegeben ist.

Berechnen Sie zu diesem Zweck die Picard-Lindelöf-Iterierten Sy, S^2y, S^3y und zeigen Sie dann durch vollständige Induktion, dass $y(x) = (-e^{-x}, -xe^{-x})$ ist.

Aufgabe 2 Gegeben sei die Differenzialgleichung $y' = x\sqrt{1-y^2}$. Zeigen Sie, dass die Gleichung mit der Anfangsbedingung $y(0) = y_0$ für jedes y_0 mit $|y_0| < 1$ in einer Umgebung von y_0 eindeutig lösbar ist, und bestimmen Sie die Lösung. Gilt diese Aussage auch noch für $y_0 = -1$?

Aufgabe 3 Es seien $f, g: \mathbb{R} \to \mathbb{R}$ nichttriviale Lösungen der folgenden Funktionalgleichungen:

$$f(x+y) = f(x)f(y) - g(x)g(y)$$

$$g(x+y) = f(x)g(y) + f(y)g(x).$$

Zeigen Sie: Sind f und g in $x_0 = 0$ differenzierbar und gilt - zu gegebenen $a, b \in \mathbb{R}^2$ - f'(0) = a sowie g'(0) = b, so sind f und g eindeutig bestimmt.

Anleitung: Man bestimme zunächst eine Funktionalgleichung für $h := f^2 + g^2$, berechne dann h(0), f(0) und g(0) und leite schließlich ein System linearer Differenzialgleichungen für f und g her.

Aufgabe 4 Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion, die lokal lipschitzstetig bezüglich der zweiten Variablen ist. Ferner gelte f(-x,y) = -f(x,y) für alle $(x,y) \in \mathbb{R}^2$. Die Funktion

$$y \colon [-h, h] \to \mathbb{R}, \ x \mapsto y(x)$$

sei eine Lösung des Anfangswertproblems

$$y' = f(x, y), \ y(0) = y_0,$$

wobei [-h, h] ein durch den Satz von Picard-Lindelöf gewährleistetes Existenzintervall ist. Zeigen Sie, dass y eine gerade Funktion ist.