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Let D C C" be a bounded domain, p € D. Let F : D — D be
holomorphic, F(p) = p and such that the derivative F'(p) is the
identity. Then F(z) =z, z€ D. ]

One may pose the problem whether the boundary type theorem as
Cartan above may be proven.

Theorem (Burns-Krantz, 1994)

Let F : 1D — ID be holomorphic and such that
FIAN)=X4+o(|A—1*) as X — 1. Then F(\) =\, A € D.

The above theorem is sharp: F(A\) = A\ — %, A €D, maps D
to .
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Theorem (Burns-Krantz, 1994)

Let F : D — D be holomorphic, where D is a strongly
pseudoconvex domain, p € 0D. Assume that

F(z) = z+ o(]|z — p||?) as z — p. Then F is the identity. |

Afterwards a number of papers appeared which could be seen as a
generalization of the above theorem.

General problem is to study whether the pair (D, p), where p € 9D
satisfies the Burns-Krantz rigidity property (of order m > 3). That
would mean the following

If F: D — D is holomorphic and F(z) = z + o(||z — p||™) as

z — p then F is the identity.
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Let D C C" be a smoothly bounded convex domain. Assume that
F : D — D be a holomorphic mapping such that
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The following conjecture was formulated by Zimmer

Let D be a bounded convex domain, p € dD. Then (D, p) satisfies
the Burns-Krantz rigidity property.
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that many basic domains were not discussed in the literature. One
could mention here recent result of domains with corners and
fibered domains (Fornaess, Ng, Rong in different configurations).
As an application of the results mentioned we get that the pair
(D", p) where p is the smooth boundary point, satisfies the
Burns-Krantz rigidity property. More generally, the pair (D, p)
where D is a Cartan domain and p is a smooth boundary point of
D, satisfies the Burns-Krantz rigidity property, too.

Below we show that the Burns-Krantz rigidity property holds for
non-smooth boundary points.

The pair (D", p), p € OD", satisfies the Burns-Krantz rigidity
property.
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Let us consider the Lempert domains (taut and the Lempert
theorem holds). Then we have complex geodesics passing through
arbitrary two points. And to any complex geodesic f : D — D we
may consider left inverses, i. e. holomorphic function G : D — D
such that G o f is an automorphism of D (wlog G o f is the
identity).

In the case of strongly convex domains complex geodesics extend
regularly to the boundary. And the left inverses may be chosen to
be regular, too. Additionally one may construct left inverses so
that they have absolute values one only on the boundary of
complex geodesics.
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F(z) =z+o(||z— p||®) as z — p for a given p € OD. Let

f: D — D be a complex geodesic such that f is Lipschitz near 1,
f(1) = p. Assume that G : D — DD is its left inverse that is
Lipschitz near p. Then G is a left inverse to F o f. In particular,
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G(F(f(A))—A = G(F(f(AN)))—=G(f(N) = O(F(f(N)—=f(A)) =
o([If(X) = pIP) = o(If(A) = F(1)IF) = o(|A = 1). (1)

It is sufficient to apply the Burns-Krantz rigidity theorem for the
disc to get the conclusion. DJ
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Let F : D° — D? be a holomorphic mapping satisfying the
assumption F(z) = z + o(||z — p||?) where p is a Silov boundary
point of D?. Without loss of generality p = (1, 1).

Consider the complex geodesics D > XA — (), a()\)) € D? where a is
holomorphic on D that a is not an automorphism and a(1) = 1. Its
(unique) left inverse is z;. The set {a(\)} over all such a's is D.
By Proposition Fi(\, a(A)) = A for all such a's so Fi(z) = z.
Analoguously we get that Fy(z) = 2.
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'non-continuous’ point in the boundary is (2w, w?).
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Gy ={(z1+ 2, 2120) : z € Dz}. (2)

Recall that G is a Lempert domain. One has the following.

The Burns-Krantz rigidity property holds for (G,, w) for any w
from the Shilov boundary of Go.

The Silov boundary of G is {(A1 + A2, A1A2) 1 |Aj| = 1}, The class
of left inverses may be taken as follows
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Sketch of the proof

We lose no generality assuming that the points are of the form
(1+7,7), |7 =1

We know description of complex geodesics — all of them extend
holomorphically through the boundary. Especially, the ones
touching (1 + 7, 7).

We know the complete solution of uniqueness of left inverses for
complex geodesics. More precisely, the royal geodesic

D3 X— 2\, )°) € G (4)

is the only one such that all maps W, |w| =1 are its left inverses

and no ¥V, w € D is its left inverse.
The flat geodesic (we fix 8 € D)

D>X— (B4 8\ e G (5)

admits all functions W, |w| < 1, as their left inverses.
Additionally, they do not touch the boundary of the royal variety.
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Sketch of the proof — continued (further complex

geodesics)

Complex geodesics intersecting the royal variety at exactly one
point that are not flat geodesics have only one left inverse. The
left inverse is not continuous at the boundary point w.

There are also complex geodesics omitting the royal variety. They
admit at most two left inverses of the form WV, |w| = 1.
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There are two distinct cases. First one is with w = (1 4+ 7, 7),

7 # 1, |7| = 1. In this case we consider flat geodesics touching w.
By our Proposition (comparing left inverses) any such geodesic is
mapped onto a flat geodesic. This lets us conclude the theorem.
In the case w = (2,1) we look at the image of the royal variety
(the royal variety touches the point w!).

By Proposition the Burns-Krantz mapping leaves the royal variety
invariant which gives F(0,0) = (0, 0).

We have a family of complex geodesics joining (0,0) with (2,1):

fe(A) == (2>\11__t&,>\f_;tf\), t € (0,1), A € D.

We have =V (f:(A)) =X, A e D, t € (0,1). We look at the
function D > X\ — —W1(F(f:(N))).
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There are two distinct cases. First one is with w = (1 4+ 7, 7),

7 # 1, |7| = 1. In this case we consider flat geodesics touching w.
By our Proposition (comparing left inverses) any such geodesic is
mapped onto a flat geodesic. This lets us conclude the theorem.
In the case w = (2,1) we look at the image of the royal variety
(the royal variety touches the point w!).

By Proposition the Burns-Krantz mapping leaves the royal variety
invariant which gives F(0,0) = (0, 0).

We have a family of complex geodesics joining (0,0) with (2,1):

fi(\) = (2>\ 1t Aﬂ), te(0,1), A eD.

1—tA? M 1—tX
We have —V(f; (X)) =X, A e D, t € (0,1). We look at the
function D > A — —W(F(f:(N\))). By direct calculations we get
that the last expression near 1 behaves like A + o((A — 1)?).
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There are two distinct cases. First one is with w = (1 4+ 7, 7),

7 # 1, |7| = 1. In this case we consider flat geodesics touching w.
By our Proposition (comparing left inverses) any such geodesic is
mapped onto a flat geodesic. This lets us conclude the theorem.
In the case w = (2,1) we look at the image of the royal variety
(the royal variety touches the point w!).

By Proposition the Burns-Krantz mapping leaves the royal variety
invariant which gives F(0,0) = (0, 0).

We have a family of complex geodesics joining (0,0) with (2,1):
fi(\) = (2A11_—t;, Af_;tﬁ\), te(0,1), A eD.

We have =V (f:(A)) =X, A e D, t € (0,1). We look at the
function D > A — —W(F(f:(N\))). By direct calculations we get

that the last expression near 1 behaves like A 4 o((\ — 1)?). This
must be some f; for some s € (0,1).
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Open problems

@ Solve the Burns-Krantz problem for Cartan domains,

@ What about the boundary points of (5 that are not from the
Silov boundary?

@ Consider the case of the symmetrized polydisc and the
tetrablock.

@ Can one apply the method to more (preferably non-smooth)
domains?




