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In this work we will give a new approach to the study of m—convex
(m —cv)functions in the domain D < R", (1<m <n).

1. If the potential theory in the class of m —subharmonic functions is based
on differential forms and currents (ddcu)k AP TE>0, k=1,2,...n—m+1, where
p=dd° z||2 the standard volume form in C”, then the potential theory in the class

of m—cv functions is based on Borel measures of a completely different nature,
namely, on Hessians H* (u)2>0, k=1,2,...,n—m+1.

Remember,  for doubly smooth function u(x) eC? (D),in the domain

2

DcR”, the orthogonal matrix ( J after a suitable orthonormal

Ox ;0

transformation can be converted to diagonal form,

A 0 .. 0
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where ﬁ.:l.(x)e]R—are the eigenvalues of the matrix Ou . Let
s Ox ,0x,

H* (u)sz(ﬂ)z Z A, .4, be the Hessian of degree k of the eigenvalue

I<ji<.<jy<n

vector A=(4,4,,....4,).



Definition 1. 4 twice smooth function u(x) eC’ (D) is called m—convex in
DcR", uem—cv(D), ifits eigenvalue vector

A= /l(x) = (21 (x),ﬂz (x),...,/l (x)) satisfies the conditions

m—cvﬂCz(D)={Hk(u)=Hk(l(x))20, VxeD, k=1,...,n—m+1}.

When m =n the class n— c¢v coincides with the class of subharmonic
functions sh={4 + 4, +...+ 4, > 0},and when m =1 it coincides with the class of
convex functions cv ={4, 20,4, >0,...,4, >0} . Moreover,

cv=1l—-cvc2-cvc..cn-cv=sh The theory of subharmonic functions is
developed and important part of the Theory of Functions and Mathematical
Physics and the Theory of Convex Functions is well studied and reflected in the
works of A. Aleksandrov, I. Bakelman, A. Pozdnyak, V. Pogorelov, etc. (see
[All, Al2, B1, B2, Po]). For m>1 this class was studied in a series of works by N.
Ivochkina, N. Trudinger, H. Wong, S.Y. Lee et al. (see [TW1-TW3], [CW],
[ITW]).

If we want to construct a good theory of m —cv functions, then the class of
functions C” (D) is not enough. For example, if we want to solve the equation
(the Dirichlet problem)

" ()= £ (1),

ulp=¢
or want to work with extremal m — cv functions, we will need to extend the
classC? (D) to the class of upper semi-continuous functions.

In the work of N. Trudinger, H. Wong [TW3], m —cv functions are

introduced in the class of upper semi-continuous functions u(x) in the domain

D c R”, using the so-called, viscosity definition: that
H"(q)20, k=1,2,..,n—m+1, for any quadratic polynomial g(x) such that the

difference u(x)—g(x) has only a finite number of local maximums in the domain



D. In addition, in this work, the maximum degree operator H"""' (u), was

defined as a Borel measure.

We give a new approach to the study of m—cv functions, establishing their
connection with m —subharmonic (shm) functions in complex space C".

The theory of sh, —functions is based on differential forms and currents

(ddcu)k ABTF>0, k=1,2,...,n—m+1,where f=dd z||2 — the standard volume

form in C". Theory of sh, —function is well developed, currently is the subject of

study by many mathematicians (Z. Blocki [BI], S .Dinev and S.Kolodziej [DK], S.
Li [Li], H.Ch.Lu [Lul, Lu2], etc.). A fairly complete review of this theory is
available in the survey article by A. S. and B. Abdullaev [AS] in the Proceedings
of MIRAN.

A doubly smooth function u(z)ECZ(D), DcC", is called (strongly)

m—subharmonic, u € sh, (D), if at each point of the domain D

shm(D)={ ueC:(ddu) Ap™ 20, k=1,2,...,n—m+1} =

(D
={ ueC*:ddun B > 0,(a’d"u)2 AL O,...,(ddcu)n_ml AL > 0},

where 8 =dd° z||2 is the standard volume form in C".

Operators (ddcu)k A B"* are closely related to Hessians. For a doubly smooth

function ueC?’(D), the second order differential  form

. 2
dd‘u :LZ 0 u_ dz; ndZz, (at a fixed point o€ D) is a Hermitian quadratic
297 0z,0zZ,

form. After a suitable unitary coordinate transformation, it is reduced to diagonal
I _ _ .
form ddu= E[i,dzl ANdZ +...+ A dz, AdZ,)|, where A,,..,, are eigenvalues of

2

the Hermitian matrix
0z ]6 Z,

J, which are real: A=(4,...,4, ) eR". Note that the



unitary transformation does not change the differential form g =dd* z||2. It is

easy to see that
(ddu)’ A B =k\(n—k)H" (u) 5, )

where H*(u)

Z A;...4, is the Hessian of the degree k of the vector

1<) < <jy<n
A=A(u)eR" .
Consequently, a  doubly smooth function u (z) eC’ (D), Dc(Cis
m —subharmonic, if at each point o € D the inequalities hold

H' (u)=H, (u)>0, k=12,...,n—-m+1. 3)

Note that the concept of a m —subharmonic function in a generalized sense is also

defined in the general case for upper semicontinuous functions.

Definition 2. A function u(z),defined in a domain D < C"is called sh,,, if
it is upper semi-continuous and for any doubly smooth sh, functions
VysersVyn €C2(D)Nsh,, (D) the current ddu A ddv, n...Andd‘v,_, A B"" defined
as

| dd“u nddv, A...ndd, , ~B""](0)= \
=Iudch1A...Adchn_,n AR Add°w, ©eF" @
is positive,
[uddv, n...ndd, , A" ndd°©20, YoeF", 020,
Here F*°(D) is a family of infinitely smooth, finitely supported in D functions.
In Blocki work [BI] it was proven that this definition is correct, that for

functions u € C?(D) this definition coincides with the original definition of

sh, —functions. Moreover, in the class of bounded s/, —functions, operators

(ddcu)k AL >0, k=1,2,...,n—m+1 are defined as Borel measures in a domain

D (see [BI], [AS]).



2. In this work, we propose a completely different approach to the study of

m—cv functions, based on relationships m—cv functions and s/, —functions,
using a rich and well-studied properties of s/, —functions. To do this, we embed a
real space R, into a complex space C?, R} cC? =R’ +iR’(z=x+iy), as a
real n—dimensional subspace. Then, we lift the function u(x),given in the
domain Dc R’ to the domain Q=DxiR’ < C7, assuming it a constant on
parallel planesII , = {z eC":x=x",yeR" }, u’ (z) =u° (x + iy) = u(x)
The key result of the work is

Theorem 1. 4 twice smooth function u(x) € Cz(D), DcR’, is m—cv in
D, if and only if function uc(z)=uc(x+iy)=u(x), that does not depend on
variables y € R, is sh, in domain D xiR’,.
To study a m—convex function u(x) , we extend it into complex space C”" as
sh, —function u°(z), and then apply the known properties of u°(z)esh, to

u(x), obtain similar properties of convex m —function. All the basic properties of

m—convex functions were obtained in this way by me and my students, using
connections m—cv and sh, — functions.

As a result, we significantly complement the previously available results in
m—cv function theory and obtain a number of new results. In particular, we give a
complete construction of the Potential Theory in the class of m—cv functions.
Theorem 1 allows us to define a m—convex function in the class of upper
semicontinuous functions.

Definition 3. An upper semi-continuous function u(x) in a domain D c R’ is
called m—convex, if the function u° (z) is strongly m— subharmonic,

u‘(z)esh, (D x iR’ )



3. The definition 3 is convenient in the study of m —convex functions,

transferring known properties of s/, —functions to the class m—cv. We present

some non-trivial ones

-- (Approximation). We take the standard kernel K;(x)= %K (%), 0 >0, where

- K(x)=K(x|);

- K(x)e C”(R");

-- support suppK = B(0,1);

- JK(x)dx= '[ K(x)dx=1.
e B(0,1)

Then the convolution

1, () = [uK, (x = y)de = [+ y)K, (1) 5)

R"
has the property that ug(x) em—cv(D;) N C”(Dy), where

D;={xeD: dist(x,0D)> 6}, and which, converges pointwise to the function

u(x) e m—cv(D), as 54 0 decreasing.

-- the limit of a uniformly convergent or decreasing sequence of m —cv functions
i1s m—cv;
-- the maximum of a finite number of m —cv functions is m —cv function; for an

arbitrary locally uniformly bounded family {u,} c m—cv, the regularization

u*(x)of the supremum u(x) ={supu9 (x)} will also be m—cv function. Since
4

m—cv C sh, then the set {u(x) <u* (x)} is polar in C" ~R*". In particular, it has
Lebesgue measure zero.

Similarly, for a locally uniformly bounded sequence {uj}cm—cv, the

regularization u*(x) of the limit u(x)=limu ;(x) will also be m—cv function,

J—©

and the set {u(x) <u* (x)} is polar;



- if u(x)em—-cv(D), then for any hyperplane IIcR" the restriction
ulpe m—cv(DNII).

I n f a ¢ t considering, without loss of generality,
IT = {x eR": x,= O} we write the restriction as u|;=u('x,0), where as usual
'x =(x,,...,x, ;). Consider a complex hyperplane II = {z eC": z, = O} in the
space C” =R x iR’ . Raising the function u(x)em—cv(D) in DxiR’, we obtain
u(z)esh, (D X iR’;).According to Property 8) [AS] the restriction
u(z) . =u('z,0) is sh, —function in (DxiR7)NII,
u (z,O) esh, (D X iR’;)ﬂ I1.. Since u° ('z,O) = u('x,O), then u('x,O) 1S m—
convex function in D(TIT.. >

Corollary. If u(x)em— cv(D), then for any plane T1 c R", dimII =m,
the restriction u |, sh(DN11).

4. In the «class of bounded  sh,—functions, operators
(dd"’u)k AL >0, k=1,2,..,n—m+1 are defined as Borel measures in a domain

D (see [Bl], [AS]). Using the connection between m—cv functions and

sh, —functions, in this section we give definitions of Hessians
H"(u), k=1,...,n—=m+1 for m—convex functions, like Borel measures.

Let u(x)— be a locally bounded m—cv function in the domain Dc R".
Then, according to Theorem 1 u° (z) =u’ (x + iy) = u(x), which does not depend

on variables yeR’, is also a locally bounded sh_function in the domain

D x iR’; c C". Consequently, the currents (ddcuc)k AL k=12, .n—m+]1,
are defined as Borel measures in D x iR’ < C".If u (z)zuj oK(w-z) is the

standard approximation, then u} (z) infinitely smooth and ] (z)i«u"(z).

Moreover, there is weak convergence of currents,

7



(ddcuj)k AP (ddcuc)k AL k=12,...n—m+]1. (6)

Since (dd"uj )k A B =k!(n—k)!Hk(uj)ﬂ”, then (6) entails the convergence of
Hessins

H* (u$) > H (u), k=1,2,...n—m+1. (7)
(7) defines for u‘(z) e sh, (Dx iR’;) NL, (Dx iR’;) Hessians
H* (uc), k=12,..,n—m+1, as Borel measures, H* (uc) = u".

Since u e sh, (D X R’;) does not depend on y € R, then for any Borel sets

k

E cD, E, cR’ the measures M, (Ex X Ey) do not depend on the set,

mesE,
4k
E cRY, ie. — yuk(ExxEy)=vk(Ex). Borel measures
4k
: E )= E xE ), k=12,...,n— 1 8
l/k Vk( x) meSEyluk( xx y) n m+ ()

is natural, to call them Hessians H*(u), k=1,2,..,n—m+1, for locally
bounded, m —convex function u(x) e m—cv(D) in the domain D c R”, since,

H"(u)=4"H" (uc) for a doubly smooth function u(x) e m —cv(D). Note that if a

sequence {u]. (x)} cm-— cv(D) of locally uniformly bounded functions converges
to u(x) , then there is weak convergence of measures

H* (uj) > H"(u), k=1,2,....n—k +1, which easily follows from a similar fact for
the class sh, (D x iR, )

5. In conclusion of the report, I want to demonstrate two important and
fundamental theorems that are proven using similar theorems in the class of

sh, —functions.



a) (comparison principle). Theorem 2. Let u(x),v(x) eEm— cv(D) NL,. (D) and

the set F = {u(x) < v(x)} cc D. Then

IH""”” (u)> JH”""” (v). (9)

F F

Inequality (9) means that if for a domain Gcc D from u|,,=v|,; and

u(x) <v(x) Vxe G, then the total mass IH”"”” (v)< JH”"”” (u).
G G

b) (maximal functions). Definition 4. A function u(x) € m —cv(D) is called
maximal in the domain D c R" if for this function the maximum principle holds in
the class of m—cv(D), ie if vem—cv(D): lim (u(x)—v(x)), then
u(x)=2v(x), Vx e D. o

Note that the following convenient maximality criterion is often used: a
function u(x) € m — cv(D) is maximal in the domain D c R" if and only if for any
domain Gcc D the inequality u(x)>v(x), VxeG holds for all functions
vem—cv(D): ”|aG 2V|aG :

Maximal functions are closely related to the Dirichlet problem.

Theorem 3. Let D={ p(x) < 0} strictly m —cv convex domain in R" and
o(&) a continuous function defined on the boundary 0D . Let's put

U(p,D)= {u em—cv(D)NC(D): u,, < (p}
and
a)(x)=sup{u(x):u EZ/[((B,D)}. (10)

Then, (x)em—cv(D)C(D), a)| ., =@ and in addition, @(x) is the
maximal m — cv function in D.

We remember, a domain D= { p(x)< 0} is strictly m —cv convex if the
function p(x) is strictly m—cv in a neighborhood
D" oD, p(x)em —cv(D+), p(x)- 5|x|2 em —cv(D+) for some & > 0.

It is natural to call the function @w(x) as a solution to the Dirichlet problem:
o(x) maximal and a)| ., =¢- Moreover, it is easy to see that a function
uem—cv(D)(NC(D) is maximal if and only if the function
u‘(z)esh, (DxR) NC(Dx R) is a maximal sk, function. It follows that

( ddcuC)”_mH AB" =0 or H " (u)=0. This is equivalent to """ (u(x)) =0.

[ Proof of Theorem 3. Note that if in (8) instead of a class m—cv(D) we
consider a wider class of subharmonic functions #n—cv(D)=sh(D)> m—cv(D),

9



then we would obtain a solution to the classical Dirichlet problem:
v(x)= sup{u e sh(D)NC(D): “|aD < ¢}. In this case Av=0, v|aD =¢@. It is clear
that w(x) <v(x) and

lima(x) < (&), V& eoD. ©)

On the other hand, any fixed boundary point &°edD of a strictly
m —convex domain D={ ,O(x)<0}, p(x)—strictly m —cv function in some
neighborhood D' 5D, is a peak point: there exists
vem—cv(D)NC(D): v(&%)=0, Vg, <0
In fact, since p(x) strictly m —cv function in a certain neighborhood

D" > D, then for a sufficiently small positive number &>0 the difference

p(x)—o
2 —

v(x) = p(x) = 8x =& em—-cv(D)NC(D): v(&")=0, v

2
0 . . . . . .
‘x— & H is m —convex in D" . Considering instead p(x) function

}<O

Dy
we'll make sure that the point &’ € 9D is peak point.

Hence, for any fixed number &£ >0 there is a large number M >0 that
M -v(x)+ (") —eelU(p,D). Therefore, M -v(x)+ (&) —e<w(x) and

lim o(x) > (&%) — . Since the number £ >0 and point £’ €D are arbitrary,

x—=>&

then limao(x)<@p(&), VE€oD. Combining this with (9) we get

x—>&

lima(x)=p(5), VoedD.

For regularization @  which is m — ¢v function in the domain D condition
of continuity on the boundary is also satisfied: lin} o (x)=p(&), VEedD. From
X—>

o (x) e m—cv(D), Ylir(% o =¢ follows that @ (x) <w(x), i.e. ® (x)=w(x) and
@(x) is m — cv function. Let us show that it is maximal.

Assume the contrary, let there be a domain Gcc D and a function
#(x)em—cv(D): ¢5|6G < a)|aG, but ¢(x’)>a(x") at some point x°.

Function

{max{a)(x),gb(x)} if xeG
w(x) =
o if xeD\G

is m—convex, w(x)em—cv(D), w| = a)| . =@ Therefore, w(x)<a(x) and
P(x")<w(x"). This is contradiction.

It remains to prove that the function @ will be continuous in the closure.
Let's build an approximation

w;(x)=woK(x—y)em—cv(D;)NC”(Dy), Dy={xeD: p(x) <5},

10



5(x) Ya(x), as 640. For small enough &>0 each interior normal
n., ¢ €Dintersects dD; at a single point 7(&) € D,, so that a homeomorphism

ns is defined n;: 0D — 0D;. Let us put ¢,(n)=@(ns(£)), n oDy, &€ D. Since
ljrrga)(x)=(p(§), V& eoD, then for any fixed £>0 there is a 5, >0 such that

‘a)(x)—(ogo (x)‘ <g&, VxedD; . For a fixed &, >0 the domain D; cc D and the

approximation @;(x) Vax(x), for 54 0 covers the domain D; .
Now applying Hartogs' lemma to a compact set 8D§0 and a function
@5, (x) € C(OD;, ) we find 0 < 5' <6, such that
ws(x) <@y (x)+3¢g, VxedD;, 6<0". (10)
Since the solution to the Dirichlet problem @(x)—is maximal in D, from
Ws(X) <5 (x)+3¢, Vx €D, ,6 <" follows that w,(x)<w(x)+4s, VxeDy,

0<0' because w(x)> @5 (x)—3¢e, VxedD. From here,
o(x) < w;(x) < o(x) + 4e, VxedD,, 6 <0, ie. |a)5(x) — a)(x)| <4g,
VxeD;, 6<0'(5,). Since £>0 arbitrary, then the convergence
@;(x) Jo(x)will be uniform inside D and w(x)eC(D), because

@5(x) € C*(Dy). The theorem is proven.]

Theorem 4. A continuous m—cv function u(x)em—cv(D)(1C(D) is
maximal if and only if the Borel measure is H'™" =0.

Proof. We proved above the equality H'™*" =0 for the maximal function
u(x)e m—cv(D)NC(D). Let now H'™"' =0 and we will show that # maximal.
Assume that « is not the maximal. Then for some domain G cc D there is a
function vem—cv(D): u| - v| but v(x")-u(x")=&>0 for some point
x'eG.

Approximating v by infinitely smooth m —cv functions v, \ v, and then

G’

: . g
using Hartog’s lemma, we find j, € N such that v ‘ac < u| o +E. Let us compare

g
3-max [ :xe G}

2
, where ¢ =

the function u(x) with the function v, (x)+4J ||x

For such 6>0 a set F:{u(x)+§<v].0(x)+§||x||2} is not empty and lies

compactly in G . Then according to the comparison principle (Theorem 2)

5" [(da |+ ) <[ (dat v+ e | | < [(dau) =0,

F F F

11



which contradicts to j(dd ¢

F
Notation. [n Theorem 4 we required the continuity of function
u(x)ye m—cv(D)(C(D) for simplicity of the proof. In fact, it is also true for
functions u(x)em—cv(D)NL; (D): a function u(x)em—cv(D)NL; (D) is
maximal if and only if the Hessian H"""' (u)=0 in Dc R".

2\” .
x|| ) > 0. The theorem is proven.

c) let u(x) € m—cv(B)ﬂLw(B), where B = {x eR": |x| <1} be the unit ball.

Then, we have the following estimate for the Hessian H* (x) in terms of the

Hessian of a lesser degree

jdtjdV(y) I Hl(x)dV(x)<

e bf* < 1 (11)
Sn—ll:+1(M_m) [ar(y) [ HI(x)ar(x),
b=t of < e

where r<0, 1<k<n-m+1 and M=supu(z), mzigfu(z).
B

Applying (11) k—times we have
Corollary. In the class of locally uniformly bounded functions

L= {u(x) eEm— cv(D)}, the family of integrals ij (x)dV(x), uel, is
K

uniformly bounded for any compact set K c D, 1<k<n—k+1,

[!(x)av (x)< (k). uet.

Thank you for your attention

12



LITERATURE

AS. Abdullaev B. Sadullaev A., Potential theory in the class of m —subharmonic
functions. Proceedings of the Mathematical Institute named after V.A. Steklova,
No. 279, (2012), 166—192.

All. Aleksandrov A.D., Intrinsic geometry of convex surfaces. OGIZ, Moscow,
1948; German transl., AkademieVerlag, Berlin, 1955.
Al3. Aleksandrov A.D., Konvexe Polyeder. Akademie-Verlag, Berlin 1958.

Bl. Blocki Z., Weak solutions to the complex Hessian equation. Ann.Inst. Fourier,
Grenoble, V.5, (2005), 1735 — 1756.
B1l. Bakeman I.Ya.,, Convex Analysis and Nonlinear Geometric Elliptic
Equations, Springer-Verlag, 1994

B2. Bakelman I.J., Variational problems and elliptic Monge-Ampere equations.
J. Diff. Geo, 18(1983), 669-999.
CW. Chou K.S., Wang X.J., Variational theory for Hessian equations. Comm.
Pure Appl. Math., 54(2001), 1029-1064.
DK. Dinev S., Kolodziej S., A priori estimates for the complex Hessian equation.
Anal. PDE, V.7, (2014), 227-244.
ITW. Ivochkina, N.S. Trudinger, X.-J. Wang, The Dirichlet problem for
degenerate Hessian equations. Comm. Partial Difi. Eqns 29 (2004), 219-235.
Li. Li S.Y., On the Dirichlet problems for symmetric function equations of the

eigenvalues of the complex Hessian. Asian J.Math., V.8, (2004), 87-106.

Lul. Lu H. Ch. A variational approach to complex Hessian equations in C".
Journal of Mathematical Analysis and Applications. V. 431:1, (2015), 228-259.
Lu2. Lu H.Ch. Solutions to degenerate Hessian equations.Jurnal de Mathematique
Pures et Appliques. V. 100:6, (2013), 785—-805.

Po. Pogorelov V., Extrinsic geometry of convex surfaces, "Nauka", Moscow,

1969; English transl., Amer. Math. Soc, Providence, R. 1., 1973

13



TWI1. Trudinger N.S. and Wang X. J., Hessian measures I. Topol. Methods
Non linear Anal. V.19 (1997), 225-239.

TW2. Trudinger N.S. and Wang X. J., Hessian measures II. Ann. Math. V.150
(1999), 1-23.

TW3. Trudinger N.S. and Wang X. J., Hessian measures III. Ann. Math. V.150
(2002), 579-604.

14



