Independence polynomial on arbitrary recursive graphs

Han Peters, Univ. of Amsterdam

Auf dem heiligen berg Wuppertal

October 25th, 2024

In statistical physics one studies partition functions on a regular lattice.

In statistical physics one studies partition functions on a regular lattice.

Computation of partition functions is *hard*, and regular lattices are difficult.

In statistical physics one studies partition functions on a regular lattice.

Computation of partition functions is *hard*, and regular lattices are difficult.

Researchers studied recursive sequences of graphs, inducing dynamical systems.

In statistical physics one studies partition functions on a regular lattice.

Computation of partition functions is *hard*, and regular lattices are difficult.

Researchers studied recursive sequences of graphs, inducing dynamical systems.

With Mikhail Hlushchanka we introduce a general recursive framework, and obtain dynamical systems of arbitrary degrees and dimensions.

In statistical physics one studies partition functions on a regular lattice.

Computation of partition functions is *hard*, and regular lattices are difficult.

Researchers studied recursive sequences of graphs, inducing dynamical systems.

With Mikhail Hlushchanka we introduce a general recursive framework, and obtain dynamical systems of arbitrary degrees and dimensions.

These dynamical systems have common features, with consequences for partition functions.

Sequence of graphs G_n , each with k marked points. G_{n+1} is constructed by connecting m copies of G_n along their marked vertices.

Sequence of graphs G_n , each with k marked points. G_{n+1} is constructed by connecting m copies of G_n along their marked vertices.

Hlushchanka-P., 2024

Induces a degree m dynamical system on \mathbb{CP}^{2^k-1} .

Sequence of graphs G_n , each with k marked points. G_{n+1} is constructed by connecting m copies of G_n along their marked vertices.

Hlushchanka-P., 2024

Induces a degree m dynamical system on \mathbb{CP}^{2^k-1} .

There exists an periodic submanifold $M \subset \mathbb{CP}^{2^k-1}$.

Sequence of graphs G_n , each with k marked points. G_{n+1} is constructed by connecting m copies of G_n along their marked vertices.

Hlushchanka-P., 2024

Induces a degree m dynamical system on \mathbb{CP}^{2^k-1} .

There exists an periodic submanifold $M \subset \mathbb{CP}^{2^k-1}$.

In the non-degenerate case the M is normally super-attracting.

Sequence of graphs G_n , each with k marked points. G_{n+1} is constructed by connecting m copies of G_n along their marked vertices.

Hlushchanka-P., 2024

Induces a degree m dynamical system on \mathbb{CP}^{2^k-1} .

There exists an periodic submanifold $M \subset \mathbb{CP}^{2^k-1}$.

In the non-degenerate case the M is normally super-attracting.

Corollary: For G_0 maximally independent the zeros of the independence polynomials are uniformly bounded.

Atoms absorbed in graphene

Atoms absorbed in graphene

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Consider all possible states σ , each having a probability.

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Consider all possible states σ , each having a probability.

Each state σ comes with an energy $H(\sigma)$.

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Consider all possible states σ , each having a probability.

Each state σ comes with an energy $H(\sigma)$.

The weight of a state σ is given by

$$\frac{e^{-H(\sigma)}}{\sum_{\sigma'} e^{-H(\sigma')}}$$

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Consider all possible states σ , each having a probability.

Each state σ comes with an energy $H(\sigma)$.

The weight of a state σ is given by

$$\frac{e^{-H(\sigma)}}{\sum_{\sigma'} e^{-H(\sigma')}}$$

This sum is called the partition function, written $Z_G = Z_G(\lambda)$.

Almost infinitely many sites v, each having a spin $\sigma(v)$.

Consider all possible states σ , each having a probability.

Each state σ comes with an energy $H(\sigma)$.

The weight of a state σ is given by

$$\frac{e^{-H(\sigma)}}{\sum_{\sigma'} e^{-H(\sigma')}}$$

This sum is called the partition function, written $Z_G = Z_G(\lambda)$.

Key idea: The almost infinite system is a limit of larger and larger finite systems.

Two spin models on graphs

Assume interaction energies are constant. Obtain a *graph G* and states $\sigma: G \to \{spins\}$.

Further assume there are only two spins, say $\{0,1\}$.

Two spin models on graphs

Assume interaction energies are constant. Obtain a *graph G* and states $\sigma: G \to \{spins\}$.

Further assume there are only two spins, say $\{0, 1\}$.

Hard-core model

Let

$$Z_G(\lambda) = \sum_{\sigma \text{ ind.}} \prod_{v \in V(G)} \lambda^{\sigma(v)},$$

summing over *independent* σ : $\sigma(v) \cdot \sigma(w) = 0$ for every $(v, w) \in E(G)$.

Two spin models on graphs

Assume interaction energies are constant. Obtain a *graph* G and states $\sigma: G \to \{spins\}$.

Further assume there are only two spins, say $\{0,1\}$.

Hard-core model

Let

$$Z_G(\lambda) = \sum_{\sigma \text{ ind.}} \prod_{v \in V(G)} \lambda^{\sigma(v)},$$

summing over *independent* σ : $\sigma(v) \cdot \sigma(w) = 0$ for every $(v, w) \in E(G)$.

 Z_G is called the *independence polynomial*.

Other partition functions

The only other two-spin model is the *Ising model*.

Other partition functions

The only other two-spin model is the *Ising model*.

The *Potts model* considers q-spin systems, for $q \ge 2$, and reduces to the Ising model when q = 2.

Other partition functions

The only other two-spin model is the *Ising model*.

The *Potts model* considers q-spin systems, for $q \ge 2$, and reduces to the Ising model when q = 2.

Related are the *Tutte polynomial* and the *Chromatic polynomial*, which consider q as a parameter.

Modeling infinite graphs as limits of a sequence (G_n)

To each graph G_n we associate a normalized free energy:

$$\rho_n(\lambda) = \frac{\log |Z_G(\lambda)|}{|V(G_n)|}$$

The free energy of the limiting system is the limit of ρ_n as $n \to \infty$.

Modeling infinite graphs as limits of a sequence (G_n)

To each graph G_n we associate a normalized free energy:

$$\rho_n(\lambda) = \frac{\log |Z_G(\lambda)|}{|V(G_n)|}$$

The free energy of the limiting system is the limit of ρ_n as $n \to \infty$.

Lee-Yang (1952)

For sequences of graphs "converging to \mathbb{Z}^{d} " the limit of the free energy exists and is continuous for physical parameters $\lambda \geq 0$.

Phase transitions

Lee-Yang (1952)

For sequences of graphs "converging to \mathbb{Z}^{d} " the limit of the free energy exists and is continuous for physical parameters $\lambda \geq 0$.

Phase transitions

Lee-Yang (1952)

For sequences of graphs "converging to \mathbb{Z}^{d} " the limit of the free energy exists and is continuous for physical parameters $\lambda \geq 0$.

A parameter $\lambda_0 \geq 0$ is a *phase transition* if the limit is *not* real analytic at λ_0 .

Phase transitions

Lee-Yang (1952)

For sequences of graphs "converging to \mathbb{Z}^{d} " the limit of the free energy exists and is continuous for physical parameters $\lambda \geq 0$.

A parameter $\lambda_0 \geq 0$ is a *phase transition* if the limit is *not* real analytic at λ_0 .

Yang-Lee (1952)

If the zeros of the polynomials $Z_{G_n}(\lambda)$ avoid a **complex neighborhood** of the parameter λ_0 , then the limiting free energy is real analytic at λ_0 .

Partition functions on regular lattices

Folklore Conjecture

Let G_n be a sequence of graphs converging to a regular lattice. Then there exists a unique phase transition on \mathbb{R}_+ .

Partition functions on regular lattices

Folklore Conjecture

Let G_n be a sequence of graphs converging to a regular lattice. Then there exists a unique phase transition on \mathbb{R}_+ .

How can it be that such a simple question is still open?

Partition functions on regular lattices

Folklore Conjecture

Let G_n be a sequence of graphs converging to a regular lattice. Then there exists a unique phase transition on \mathbb{R}_+ .

How can it be that such a simple question is still open?

- Regular lattices are not trivial.
- ② Computation of G_n is "hard".

Computation of G_n is hard.

Exact computation of partition functions is almost always #P hard.

Exact computation of partition functions is almost always #P hard.

How about approximation of $Z_{G_n}(\lambda)$, up to some multiplicative error?

Exact computation of partition functions is almost always #P hard.

How about approximation of $Z_{G_n}(\lambda)$, up to some multiplicative error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by $\Delta \geq 2$. Let $0 \in U$ be the maximal zero-free domain.

Exact computation of partition functions is almost always #P hard.

How about approximation of $Z_{G_n}(\lambda)$, up to some multiplicative error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by $\Delta \geq 2$. Let $0 \in U$ be the maximal zero-free domain.

① There exists a polynomial time algorithm for the approximation of $Z_G(\lambda)$ on U. (Patel-Regts 2017, Barvinok)

Exact computation of partition functions is almost always #P hard.

How about approximation of $Z_{G_n}(\lambda)$, up to some multiplicative error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by $\Delta \geq 2$. Let $0 \in U$ be the maximal zero-free domain.

- ① There exists a polynomial time algorithm for the approximation of $Z_G(\lambda)$ on U. (Patel-Regts 2017, Barvinok)
- Outside of U zeros are dense, and approximation of $Z_G(\lambda)$ is #P-hard. (Bezakova-Galanis-Goldberg-Stefankovic 2018, de Boer-Buys-Guerini-P.-Regts 2021)

Exact computation of partition functions is almost always #P hard.

How about approximation of $Z_{G_n}(\lambda)$, up to some multiplicative error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by $\Delta \geq 2$. Let $0 \in U$ be the maximal zero-free domain.

- ① There exists a polynomial time algorithm for the approximation of $Z_G(\lambda)$ on U. (Patel-Regts 2017, Barvinok)
- Outside of U zeros are dense, and approximation of $Z_G(\lambda)$ is #P-hard. (Bezakova-Galanis-Goldberg-Stefankovic 2018, de Boer-Buys-Guerini-P.-Regts 2021)

A precise description of U is still lacking.

Relevance of zero-sets of partition functions

To summarize

- Question Telescopies Telescopies
 Question Telescopies
- Zeros are related to computational hardness.
- ② Zero sets are difficult to describe, even for regular lattices.

Relevance of zero-sets of partition functions

To summarize

- Zeros are related to phase transitions.
- Zeros are related to computational hardness.
- 3 Zero sets are difficult to describe, even for regular lattices.

A recent result:

de Boer-Buys-P.-Regts, 2024

Consider an increasing sequence of d-dimensional torus-graphs. If the tori are balanced, the zeros are bounded. If the tori are highly unbalanced, the zeros are unbounded.

Example of recursive graphs, I

Example of recursive graphs, I

Bleher-Lyubich-Roeder (2010), Chio-Roeder (2021)

Consider the Ising model on diamond hierarchical lattices. Then there is a unique phase transition.

Example of recursive graphs, II

Example of recursive graphs, II

Rivera-Letelier Sombra (talk at Fields Institute, 2019)

Consider the Hard-Core model on d-ary trees. Then zeros accumulate at a unique parameter in \mathbb{R}_+ :

$$\lambda(d) = \frac{d^d}{(d+1)^{d-1}},$$

the unique phase transition of infinite order.

Example of recursive graphs, III

Example of recursive graphs, III

Nguyen-Bac Dang, Rostislav Grigorchuk, Mikhail Lyubich, 2021

Spectrum of the Laplacian on Schreier graphs of some self-similar groups.

Partition functions and recursive graphs

There are many other examples where recursive graphs are either studied explicitly, or are used in proofs.

Partition functions and recursive graphs

There are many other examples where recursive graphs are either studied explicitly, or are used in proofs.

In all of these examples, the recursion induces a rational dynamical system, which can be studied to describe the zeros.

Partition functions and recursive graphs

There are many other examples where recursive graphs are either studied explicitly, or are used in proofs.

In all of these examples, the recursion induces a rational dynamical system, which can be studied to describe the zeros.

The purpose of this project is to present a **general framework**, to study the induced dynamical systems, and to draw conclusions regarding the partition functions.

The data:

1 An initial graph G_0 with k marked vertices.

The data:

- An initial graph G_0 with k marked vertices.
- Provided For each label j a partition of $\{1, \ldots, m\}$. (forming a hyper-multigraph H on m vertices.)

The data:

- An initial graph G_0 with k marked vertices.
- ② For each label j a partition of $\{1, ..., m\}$. (forming a hyper-multigraph H on m vertices.)
- **3** For each edge $e = \{v_{i_1}, \dots, v_{i_s}\} \in E(H)$, a graph Σ_e with a single marked vertex, and a map $e \to V(\Sigma_e)$.

The data:

- An initial graph G_0 with k marked vertices.
- ② For each label j a partition of $\{1, ..., m\}$. (forming a hyper-multigraph H on m vertices.)
- **3** For each edge $e = \{v_{i_1}, \dots, v_{i_s}\} \in E(H)$, a graph Σ_e with a single marked vertex, and a map $e \to V(\Sigma_e)$.
- **4** An injective function $\Phi: \{1, \ldots, k\} \to E(H)$.

The data:

- An initial graph G_0 with k marked vertices.
- ② For each label j a partition of $\{1, ..., m\}$. (forming a hyper-multigraph H on m vertices.)
- **3** For each edge $e = \{v_{i_1}, \dots, v_{i_s}\} \in E(H)$, a graph Σ_e with a single marked vertex, and a map $e \to V(\Sigma_e)$.
- **4** An injective function $\Phi: \{1, \ldots, k\} \to E(H)$.

We call (H, Σ, Φ) the gluing data.

Step 1. Start with the graph G_0 .

- **Step 1.** Start with the graph G_0 .
- **Step 2.** Having defined G_n , take m copies $G_n(1), \ldots, G_n(m)$.

- **Step 1.** Start with the graph G_0 .
- **Step 2.** Having defined G_n , take m copies $G_n(1), \ldots, G_n(m)$.
- **Step 3.** For each edge $e = \{v_{i_1}, \ldots, v_{i_s}\} \in E(H)$ having label j, connect the marked vertices labeled j in the copies $G_n(i_1), \ldots, G_n(i_s)$ using the graph Σ_e , identifying the vertex from $G_n(i_t)$ with the image of v_{i_t} in Σ_e .

Let G_{n+1} be the obtained graph.

- **Step 1.** Start with the graph G_0 .
- **Step 2.** Having defined G_n , take m copies $G_n(1), \ldots, G_n(m)$.
- **Step 3.** For each edge $e = \{v_{i_1}, \ldots, v_{i_s}\} \in E(H)$ having label j, connect the marked vertices labeled j in the copies $G_n(i_1), \ldots, G_n(i_s)$ using the graph Σ_e , identifying the vertex from $G_n(i_t)$ with the image of v_{i_t} in Σ_e .

Let G_{n+1} be the obtained graph.

Step 4. Mark k vertices of G_{n+1} using the function $\Phi:\{1,\ldots,k\}\to E(H)$. If $e=\Phi(j)$ has multiple vertices, label the marked vertex of Σ_e .

Step 1. Let G_0 be a 3-cycle, with vertices labeled $\{1,2,3\}$.

- **Step 1.** Let G_0 be a 3-cycle, with vertices labeled $\{1,2,3\}$.
- **Step 2.** Take 3 copies of G_n .

Step 1. Let G_0 be a 3-cycle, with vertices labeled $\{1,2,3\}$.

Step 2. Take 3 copies of G_n .

Step 3a. Edges of H: $\{1,2\}$ has label 3, $\{1,3\}$ has label 2, and $\{2,3\}$ has label 1.

- **Step 1.** Let G_0 be a 3-cycle, with vertices labeled $\{1,2,3\}$.
- **Step 2.** Take 3 copies of G_n .
- **Step 3a.** Edges of H: $\{1,2\}$ has label 3, $\{1,3\}$ has label 2, and $\{2,3\}$ has label 1.
- **Step 3b.** Each connecting graph Σ_e consists of a single vertex.

- **Step 1.** Let G_0 be a 3-cycle, with vertices labeled $\{1,2,3\}$.
- **Step 2.** Take 3 copies of G_n .
- **Step 3a.** Edges of H: $\{1,2\}$ has label 3, $\{1,3\}$ has label 2, and $\{2,3\}$ has label 1.
- **Step 3b.** Each connecting graph Σ_e consists of a single vertex.
- **Step 4.** Define $\Phi(j) = \{v_i(j)\}.$

Example 2: Towers of Hanoi

The Sierpinsky triangle G_2 and the towers of Hanoi G_2 , where the connecting graphs are *edges*.

Step 1. G_0 is a single edge with labels $\{1, 2\}$.

- **Step 1.** G_0 is a single edge with labels $\{1, 2\}$.
- **Step 2.** Take 3 copies of G_n .

- **Step 1.** G_0 is a single edge with labels $\{1, 2\}$.
- **Step 2.** Take 3 copies of G_n .
- **Step 3.** Identify the vertices labeled 2.

Step 1. G_0 is a single edge with labels $\{1, 2\}$.

Step 2. Take 3 copies of G_n .

Step 3. Identify the vertices labeled 2.

Step 4. Let $\Phi(1) = \{v_1(1)\}$ and $\Phi(2) = \{v_3(1)\}$.

Step 1. G_0 is a 3-pod with leaves labeled $\{1, 2, 3\}$.

- **Step 1.** G_0 is a 3-pod with leaves labeled $\{1, 2, 3\}$.
- **Step 2.** Given G_n , take 2 copies of G_n .

- **Step 1.** G_0 is a 3-pod with leaves labeled $\{1, 2, 3\}$.
- **Step 2.** Given G_n , take 2 copies of G_n .
- **Step 3.** Identify the vertices labeled 2.

Step 1. G_0 is a 3-pod with leaves labeled $\{1, 2, 3\}$.

Step 2. Given G_n , take 2 copies of G_n .

Step 3. Identify the vertices labeled 2.

Step 4. Let
$$\Phi(1) = \{v_1(3)\}, \ \Phi(2) = \{v_1(1)\} \ \text{and} \ \Phi(3) = \{v_2(1)\}.$$

Write

$$Z_{G_n}(\lambda) = \sum_{(x_1,\ldots,x_k)\in\{0,1\}^k} (x_1,\ldots,x_k)_n,$$

where

$$(x_1,\ldots,x_k)_n=Z_{G_n}(\lambda,x_1,\ldots,x_k)$$

sums only $\sigma: V(G_n) \to \{0,1\}$ with $\sigma(j) = x_j$.

Write

$$Z_{G_n}(\lambda) = \sum_{(x_1,\ldots,x_k)\in\{0,1\}^k} (x_1,\ldots,x_k)_n,$$

where

$$(x_1,\ldots,x_k)_n=Z_{G_n}(\lambda,x_1,\ldots,x_k)$$

sums only $\sigma: V(G_n) \to \{0,1\}$ with $\sigma(j) = x_j$.

Induced dynamics

Each $(x_1, \ldots, x_k)_{n+1}$ can be expressed in the variables $(y_1, \ldots, y_k)_n$ as a homogeneous polynomial of degree m.

Write

$$Z_{G_n}(\lambda) = \sum_{(x_1,...,x_k)\in\{0,1\}^k} (x_1,...,x_k)_n,$$

where

$$(x_1,\ldots,x_k)_n=Z_{G_n}(\lambda,x_1,\ldots,x_k)$$

sums only $\sigma: V(G_n) \to \{0,1\}$ with $\sigma(j) = x_j$.

Induced dynamics

Each $(x_1, \ldots, x_k)_{n+1}$ can be expressed in the variables $(y_1, \ldots, y_k)_n$ as a homogeneous polynomial of degree m.

Formula for $(x_1, \ldots, x_k)_{n+1}$:

$$\sum_{x \sim y \in \{0,1\}^{km}} \prod_{i=1}^{m} (y_1(i), \dots, y_k(i)) \cdot \prod_{e \in E(H)} \frac{Z_{\Sigma_e}(\lambda, y|_e, x|_e)}{\lambda^{|y|_e|}}$$

An invariant manifold

Observation

If for G_n the probabilities $\mathbb{P}(x_j = 1)$ are independent from assignments to all other marked vertices, then the same holds for G_{n+1} .

An invariant manifold

Observation

If for G_n the probabilities $\mathbb{P}(x_j = 1)$ are independent from assignments to all other marked vertices, then the same holds for G_{n+1} .

Hence the equations

$$\frac{(x_1,\ldots,x_{j-1},1,x_{j+1},\ldots,x_k)}{(x_1,\ldots,x_{j-1},0,x_{j+1},\ldots,x_k)} = \frac{(0,\ldots,0,1,0,\ldots,0)}{(0,\ldots,0,0,0,\ldots,0)}$$

define a k-dimensional manifold in \mathbb{C}^{2^k} and in \mathbb{P}^{2^k-1} .

Example: Dendrite recursion

When passing from G_{n+1} to G_n , the action on the labels is:

$$a \rightarrow c$$

$$b \rightarrow a$$

$$c \rightarrow a$$

Example: Dendrite recursion

When passing from G_{n+1} to G_n , the action on the labels is:

$$a \rightarrow c$$

$$b \rightarrow a$$

$$c \rightarrow a$$

As a consequence, the invariant 3-manifold is mapped onto a periodic 2-manifold, which is a graph over the variables

$$[1,0,0]_n = \frac{(1,0,0)_n}{(0,0,0)_n}$$
 and $[0,0,1]_n = \frac{(0,0,1)_n}{(0,0,0)_n}$

For the second iterate this 2-manifold in \mathbb{P}^2 consists of fixed points.

Understanding the dynamics near the fixed manifold

Assume that none of the periodic labels are critical.

Theorem

The periodic manifold is normally super-attracting.

Understanding the dynamics near the fixed manifold

Assume that none of the periodic labels are critical.

Theorem

The periodic manifold is normally super-attracting.

Proof by Mathematica.

In[21]:= Eigenvalues[jacobiansurface]

Out[21]= {0, 0, 0, 0, 0, 1, 1}

Definition

A labeled graph G_n is maximally independent if for every assignment $x = (x_1, ..., x_k)$ the maximal independent $I(x) \subset V(G_0)$ is unique, and moreover

$$|I(1,\ldots,1)|-|I(0,\ldots,0)|=k.$$

Definition

A labeled graph G_n is maximally independent if for every assignment $x = (x_1, ..., x_k)$ the maximal independent $I(x) \subset V(G_0)$ is unique, and moreover

$$|I(1,\ldots,1)|-|I(0,\ldots,0)|=k.$$

Example

For the Dendrite recursion the tripod G_0 is not maximally independent, but G_1 is.

Definition

A labeled graph G_n is maximally independent if for every assignment $x = (x_1, ..., x_k)$ the maximal independent $I(x) \subset V(G_0)$ is unique, and moreover

$$|I(1,\ldots,1)|-|I(0,\ldots,0)|=k.$$

Example

For the Dendrite recursion the tripod G_0 is not maximally independent, but G_1 is.

For the Antenna recursion the edge G_0 is not maximally independent, but G_2 is.

Theorem

For any maximally independent G_0 and non-degenerate recursion (H, Σ, Φ) the zeros of the independence polynomials of (G_n) are uniformly bounded.

Theorem

For any maximally independent G_0 and non-degenerate recursion (H, Σ, Φ) the zeros of the independence polynomials of (G_n) are uniformly bounded.

Idea of the proof For large λ the initial value in \mathbb{CP}^{2^k-1} will lie close to the fixed manifold.

Theorem

For any maximally independent G_0 and non-degenerate recursion (H, Σ, Φ) the zeros of the independence polynomials of (G_n) are uniformly bounded.

Idea of the proof For large λ the initial value in \mathbb{CP}^{2^k-1} will lie close to the fixed manifold.

Since the fixed manifold is normally super-attracting, the orbit of z_0 will be contracted towards the manifold.

Theorem

For any maximally independent G_0 and non-degenerate recursion (H, Σ, Φ) the zeros of the independence polynomials of (G_n) are uniformly bounded.

Idea of the proof For large λ the initial value in \mathbb{CP}^{2^k-1} will lie close to the fixed manifold.

Since the fixed manifold is normally super-attracting, the orbit of z_0 will be contracted towards the manifold.

When summing the coordinates, the terms $(1, ..., 1)_n$ will dominate the others, hence no zeros.

Conclusion and future work

Conclusion and future work

The dynamics induced by the recursion can indeed be analyzed in this generality.

Conclusion and future work

The dynamics induced by the recursion can indeed be analyzed in this generality.

This is just a start:

- **1** When are zeros bounded away from \mathbb{R}_+ ?
- When do zeros equidistribute?
- **3** Does the behavior depend on (G_0, Σ) , or only on (H, Φ) ?
- What about other partition functions?
- **5**

Thank you.

