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Summary and conclusions

In statistical physics one studies partition functions on a regular
lattice.

Computation of partition functions is hard, and regular lattices are
difficult.

Researchers studied recursive sequences of graphs, inducing
dynamical systems.

With Mikhail Hlushchanka we introduce a general recursive
framework, and obtain dynamical systems of arbitrary degrees and
dimensions.

These dynamical systems have common features, with
consequences for partition functions.
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Independence polynomial on recursive graphs, main result

Sequence of graphs G, each with k marked points. G,.1 is
constructed by connecting m copies of G, along their marked
vertices.

Hlushchanka-P., 2024

Induces a degree m dynamical system on CP2“-1.
There exists an periodic submanifold M C CP2 -1

In the non-degenerate case the M is normally super-attracting.

Corollary: For Gy maximally independent the zeros of the

independence polynomials are uniformly bounded. |
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Atoms absorbed in graphene
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Statistical physics Partition functions

Almost infinitely many sites v, each having a spin o(v).
Consider all possible states o, each having a probability.
Each state 0 comes with an energy H(o).

The weight of a state o is given by
e_H(J)
Za’ e~ H(")

This sum is called the partition function, written Zg = Zg(\).
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Statistical physics Partition functions

Almost infinitely many sites v, each having a spin o(v).
Consider all possible states o, each having a probability.
Each state 0 comes with an energy H(o).

The weight of a state o is given by
e_H(J)
Za’ e~ H(")

This sum is called the partition function, written Zg = Zg(\).

Key idea: The almost infinite system is a limit of larger and larger
finite systems.
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Two spin models on graphs

Assume interaction energies are constant. Obtain a graph G and
states 0 : G — {spins}.
Further assume there are only two spins, say {0, 1}.
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Two spin models on graphs

Assume interaction energies are constant. Obtain a graph G and
states 0 : G — {spins}.
Further assume there are only two spins, say {0, 1}.

Hard-core model
Let
ZG()\) — Z H AU(V))

oind. veV(G)
summing over independent o: o(v)-o(w) = 0 for every

(v,w) € E(G). |
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Two spin models on graphs

Assume interaction energies are constant. Obtain a graph G and
states 0 : G — {spins}.
Further assume there are only two spins, say {0, 1}.

Hard-core model
Let
ZG()\) — Z H AU(V))

oind. veV(G)

summing over independent o: o(v)-o(w) = 0 for every

(v,w) € E(G). ]

Zc 1s called the independence polynomial.
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The only other two-spin model is the Ising model.

The Potts model considers g-spin systems, for g > 2, and reduces
to the Ising model when g = 2.
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Other partition functions

The only other two-spin model is the Ising model.

The Potts model considers g-spin systems, for g > 2, and reduces
to the Ising model when g = 2.

Related are the Tutte polynomial and the Chromatic polynomial,
which consider g as a parameter.
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Modeling infinite graphs as limits of a sequence (G,)

To each graph G, we associate a normalized free energy:

log|Ze()|
N =G

The free energy of the limiting system is the limit of p, as n — oc.

Han Peters, Univ. of Amsterdam Independence polynomial on arbitrary recursive graphs



Modeling infinite graphs as limits of a sequence (G,)

To each graph G, we associate a normalized free energy:

log|Ze()|
N =G

The free energy of the limiting system is the limit of p, as n — oc.

Lee-Yang (1952)

For sequences of graphs “converging to Z9" the limit of the free
energy exists and is continuous for physical parameters A > 0.
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Phase transitions

Lee-Yang (1952)

For sequences of graphs “converging to Z9" the limit of the free
energy exists and is continuous for physical parameters A > 0.

A parameter \g > 0 is a phase transition if the limit is not real
analytic at .
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Phase transitions

Lee-Yang (1952)

For sequences of graphs “converging to Z9" the limit of the free
energy exists and is continuous for physical parameters A > 0.

A parameter \g > 0 is a phase transition if the limit is not real
analytic at .

Yang-Lee (1952)

If the zeros of the polynomials Zg ()\) avoid a complex
neighborhood of the parameter \g, then the limiting free energy

Is real analytic at \g. |
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Partition functions on regular lattices

Folklore Conjecture

Let G, be a sequence of graphs converging to a regular lattice.
Then there exists a unique phase transition on R .
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Folklore Conjecture

Let G, be a sequence of graphs converging to a regular lattice.
Then there exists a unique phase transition on R .

How can it be that such a simple question is still open?
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Partition functions on regular lattices

Folklore Conjecture

Let G, be a sequence of graphs converging to a regular lattice.
Then there exists a unique phase transition on R .

How can it be that such a simple question is still open?

@ Regular lattices are not trivial.
© Computation of G, is “hard”.
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Exact computation of partition functions is almost always #P hard.

How about approximation of Zg (), up to some multiplicative
error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by A > 2. Let
0 € U be the maximal zero-free domain.

© There exists a polynomial time algorithm for the
approximation of Zg(\) on U. (Patel-Regts 2017, Barvinok)

@ Outside of U zeros are dense, and approximation of Zg(\) is
# P-hard. (Bezakova-Galanis-Goldberg-Stefankovic 2018, de
Boer-Buys-Guerini-P.-Regts 2021) ]
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Computation of G, is hard.

Exact computation of partition functions is almost always #P hard.

How about approximation of Zg (), up to some multiplicative
error?

Zero sets and Hardness, slightly paraphrased

Consider all graphs with vertex degrees bounded by A > 2. Let
0 € U be the maximal zero-free domain.

© There exists a polynomial time algorithm for the
approximation of Zg(\) on U. (Patel-Regts 2017, Barvinok)

@ Outside of U zeros are dense, and approximation of Zg(\) is
# P-hard. (Bezakova-Galanis-Goldberg-Stefankovic 2018, de
Boer-Buys-Guerini-P.-Regts 2021) ]

A precise description of U is still lacking.
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Relevance of zero-sets of partition functions

To summarize
© Zeros are related to phase transitions.
© Zeros are related to computational hardness.

© Zero sets are difficult to describe, even for regular lattices.

Han Peters, Univ. of Amsterdam Independence polynomial on arbitrary recursive graphs



Relevance of zero-sets of partition functions

To summarize
@ Zeros are related to phase transitions.
© Zeros are related to computational hardness.

© Zero sets are difficult to describe, even for regular lattices.

A recent result:

de Boer-Buys-P.-Regts, 2024

Consider an increasing sequence of d-dimensional torus-graphs. If
the tori are balanced, the zeros are bounded. If the tori are highly
unbalanced, the zeros are unbounded.
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Example of recursive graphs, |

Bleher-Lyubich-Roeder (2010), Chio-Roeder (2021)

Consider the Ising model on diamond hierarchical lattices. Then
there is a unique phase transition.
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Example of recursive graphs, |

Rivera-Letelier& Sombra (talk at Fields Institute, 2019)

Consider the Hard-Core model on d-ary trees. Then zeros
accumulate at a unique parameter in R :

dd
Ald) =
the unique phase transition of infinite order. )

.

SRRy
11T
1T

e
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Example of recursive graphs, |l

Nguyen-Bac Dang, Rostislav Grigorchuk, Mikhail Lyubich, 2021

Spectrum of the Laplacian on Schreier graphs of some self-similar
groups.
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Partition functions and recursive graphs

There are many other examples where recursive graphs are either
studied explicitly, or are used in proofs.
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There are many other examples where recursive graphs are either
studied explicitly, or are used in proofs.

In all of these examples, the recursion induces a rational dynamical
system, which can be studied to describe the zeros.
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Partition functions and recursive graphs

There are many other examples where recursive graphs are either
studied explicitly, or are used in proofs.

In all of these examples, the recursion induces a rational dynamical
system, which can be studied to describe the zeros.

The purpose of this project is to present a general framework, to
study the induced dynamical systems, and to draw conclusions
regarding the partition functions.
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General framework for recursive graphs

The data:
© An initial graph Gy with k marked vertices.
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© For each edge e ={v;,,..., v} € E(H), a graph X, with a
single marked vertex, and a map e — V().
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General framework for recursive graphs

The data:

© An initial graph Gy with k marked vertices.

@ For each label j a partition of {1,..., m}.
(forming a hyper-multigraph H on m vertices.)

© For each edge e ={v;,,..., v} € E(H), a graph X, with a
single marked vertex, and a map e — V().

© An injective function ¢ : {1,... k} — E(H).
We call (H, X, ®) the gluing data.
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Constructing the sequence of graphs

Step 1. Start with the graph G.
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Constructing the sequence of graphs

Step 1. Start with the graph G.
Step 2. Having defined G,, take m copies G,(1),..., G,(m).

Step 3. For each edge e = {vj,,...,vi.} € E(H) having label j,
connect the marked vertices labeled j in the copies

Gn(i1), ..., Gy(is) using the graph X, identifying the vertex from
Gn(it) with the image of v, in ..

Let G,11 be the obtained graph.
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Constructing the sequence of graphs

Step 1. Start with the graph G.
Step 2. Having defined G,, take m copies G,(1),..., G,(m).

Step 3. For each edge e = {vj,,...,vi.} € E(H) having label j,
connect the marked vertices labeled j in the copies

Gn(i1), ..., Gy(is) using the graph X, identifying the vertex from
Gn(it) with the image of v, in ..

Let G,11 be the obtained graph.

Step 4. Mark k vertices of G, 1 using the function
O :{1,...,k} - E(H). If e =®(j) has multiple vertices, label the
marked vertex of 2 ..
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Example 1: Sierpinsky triangles
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Step 1. Let Gy be a 3-cycle, with vertices labeled {1, 2, 3}.
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Step 1. Let Gy be a 3-cycle, with vertices labeled {1, 2, 3}.
Step 2. Take 3 copies of G,,.

Step 3a. Edges of H: {1,2} has label 3, {1,3} has label 2, and
{2,3} has label 1.
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Example 1: Sierpinsky triangles

Step 1. Let Gy be a 3-cycle, with vertices labeled {1, 2, 3}.
Step 2. Take 3 copies of G,,.

Step 3a. Edges of H: {1,2} has label 3, {1,3} has label 2, and
{2,3} has label 1.

Step 3b. Each connecting graph Y. consists of a single vertex.
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Example 1: Sierpinsky triangles

Step 1. Let Gy be a 3-cycle, with vertices labeled {1, 2, 3}.
Step 2. Take 3 copies of G,,.

Step 3a. Edges of H: {1,2} has label 3, {1,3} has label 2, and
{2,3} has label 1.

Step 3b. Each connecting graph Y. consists of a single vertex.

Step 4. Define ®(j) = {v;(j)}.
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Example 2: Towers of Hanoi

The Sierpinsky triangle G, and the towers of Hanoi G, where the
connecting graphs are edges.
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Example 3: Antenna Dendrite

Step 1. Gy is a single edge with labels {1,2}.
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Example 3: Antenna Dendrite

Step 1. Gy is a single edge with labels {1,2}.
Step 2. Take 3 copies of G,,.
Step 3. Identify the vertices labeled 2.
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Example 3: Antenna Dendrite

Step 1. Gy is a single edge with labels {1,2}.
Step 2. Take 3 copies of G,,.

Step 3. Identify the vertices labeled 2.

Step 4. Let ®(1) = {v1(1)} and ®(2) = {wv3(1)}.
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Final example: Another Dendrite

Step 1. Gy is a 3-pod with leaves labeled {1,2,3}.
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Final example: Another Dendrite

Step 1. Gy is a 3-pod with leaves labeled {1,2,3}.
Step 2. Given G, take 2 copies of G,,.
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Final example: Another Dendrite

Step 1. Gy is a 3-pod with leaves labeled {1,2,3}.
Step 2. Given G, take 2 copies of G,,.
Step 3. Identify the vertices labeled 2.
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Final example: Another Dendrite

Step 1. Gy is a 3-pod with leaves labeled {1,2,3}.
Step 2. Given G, take 2 copies of G,,.
Step 3. Identify the vertices labeled 2.

Step 4. Let ®(1) = {v1(3)}, ®(2) = {vi(1)} and &(3) = {s(1)}.
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Dynamics induced by gluing data.
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Dynamics induced by gluing data.

Write
Zc. (\) = > (X,

(x1,...,x, )E{0,1}K
where
(Xl, c o ;Xk)n — ZGn()\,Xl, e o ,Xk)

sums only o : V(G,) — {0, 1} with o(j) = x;.
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Dynamics induced by gluing data.

Write
Zc. (\) = > (X,

(x1,...,x, )E{0,1}K
where
(Xl, e o ;Xk)n — ZGn()\,Xl, e o ,Xk)

sums only o : V(G,) — {0, 1} with o(j) = x;.

Induced dynamics

Each (x1,...,Xk)nt1 can be expressed in the variables
(y1,---,Yk)n as a homogeneous polynomial of degree m.
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Dynamics induced by gluing data.

Write
Zc. (\) = > (X,

(x1,...,x, )E{0,1}K
where
(Xl, e o ;Xk)n — ZGn()\,Xl, e o ,Xk)

sums only o : V(G,) — {0, 1} with o(j) = x;.

Induced dynamics

Each (x1,...,Xk)nt1 can be expressed in the variables
(y1,---,Yk)n as a homogeneous polynomial of degree m.

Formula for (xq,...,Xk)ns1:

S T0a) iy [ ZEedYlenxle)

. )\|y|e|
x~y€e{0,1}km i=1 ecE(H)
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An invariant manifold

If for G, the probabilities P(x; = 1) are independent from
assighments to all other marked vertices, then the same holds for

Ghi1. |
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An invariant manifold

If for G, the probabilities P(x; = 1) are independent from
assighments to all other marked vertices, then the same holds for

Ghi1. |

Hence the equations

(Xl,...,Xj_l,].,XH_l,...,Xk) _ (0,...,0,1,0,...,0)
(Xl,...,XJ'_1,O,XJ'_|_1,...,Xk) (O,...,0,0,0,...,O)

define a k-dimensional manifold in C2“ and in P2~ 1.
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Example: Dendrite recursion

When passing from G,11 to G,, the action on the labels is:

a—c
b— a
cC— a

Han Peters, Univ. of Amsterdam Independence polynomial on arbitrary recursive graphs



Example: Dendrite recursion

When passing from G,11 to G,, the action on the labels is:

a—c
b— a
cC— a

As a consequence, the invariant 3-manifold is mapped onto a
periodic 2-manifold, which is a graph over the variables

_ (1,0,0),

0,0.1),
1,0,0], = —
11.0.00n =50, 0),

and [0,0,1], = (0.0.0)

For the second iterate this 2-manifold in P? consists of fixed points.
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Understanding the dynamics near the fixed manifold

Assume that none of the periodic labels are critical.

The periodic manifold is normally super-attracting. \
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Understanding the dynamics near the fixed manifold

Assume that none of the periodic labels are critical.

The periodic manifold is normally super-attracting. \

Proof by Mathematica.

inf211= Eigenvalues[jacobiansurface]

ou2i= {0, 8,0, 8,0, 1, 1)
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Maximally independent
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Maximally independent

A labeled graph G, is maximally independent if for every
assignment x = (xg, ..., xx) the maximal independent

[(x) C V(Gp) is unique, and moreover

I(1,...,1)] — |/(0,...,0)| = k. ]

Han Peters, Univ. of Amsterdam Independence polynomial on arbitrary recursive graphs




Definition
A labeled graph G, is maximally independent if for every
assignment x = (xg, ..., xx) the maximal independent

[(x) C V(Gp) is unique, and moreover
11(1,...,1)| = [/(0,...,0)] = k. ]

For the Dendrite recursion the tripod Gg is not maximally
independent, but Gy is.

Maximally independent
Definition

;
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Maximally independent
Definition

Definition
A labeled graph G, is maximally independent if for every
assignment x = (xg, ..., xx) the maximal independent

[(x) C V(Gp) is unique, and moreover

I(1,...,1)] — |/(0,...,0)| = k. ]

For the Dendrite recursion the tripod Gg is not maximally
independent, but Gy is.

For the Antenna recursion the edge Gg is not maximally
Independent, but Go is.

;
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Bounded zeros

For any maximally independent Gy and non-degenerate recursion
(H, X, ®) the zeros of the independence polynomials of (G,) are
uniformly bounded.

Han Peters, Univ. of Amsterdam Independence polynomial on arbitrary recursive graphs



Bounded zeros

For any maximally independent Gy and non-degenerate recursion
(H, X, ®) the zeros of the independence polynomials of (G,) are
uniformly bounded.

Idea of the proof For large A the initial value in CP2~1 will lie
close to the fixed manifold.
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Bounded zeros

For any maximally independent Gy and non-degenerate recursion
(H, X, ®) the zeros of the independence polynomials of (G,) are
uniformly bounded.

2k 1

Idea of the proof For large A the initial value in CP will lie

close to the fixed manifold.

Since the fixed manifold is normally super-attracting, the orbit of
Zo will be contracted towards the manifold.
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Bounded zeros

For any maximally independent Gy and non-degenerate recursion
(H, X, ®) the zeros of the independence polynomials of (G,) are
uniformly bounded.

2k 1

Idea of the proof For large A the initial value in CP will lie

close to the fixed manifold.

Since the fixed manifold is normally super-attracting, the orbit of
Zo will be contracted towards the manifold.

When summing the coordinates, the terms (1,...,1), will
dominate the others, hence no zeros. []
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Conclusion and future work
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Conclusion and future work

The dynamics induced by the recursion can indeed be analyzed in
this generality.
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Conclusion and future work

The dynamics induced by the recursion can indeed be analyzed in
this generality.

This is just a start:

©@ When are zeros bounded away from R, 7

© When do zeros equidistribute?

© Does the behavior depend on (G, ¥), or only on (H, ®)?
Q@ What about other partition functions?

@ .. |
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Thank you.
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