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Abstract

We will discuss dynamics in complex dimension 2. We show some
connections between the complex Hénon family and the complex
geometry of the currents they generate. Then we look at the parallels
with automorphisms of compact surfaces.

The moral of this talk will be that in the process of doing complex
dynamics we encounter a number of objects that are “old friends” from
complex analysis.

And we will see that in many cases, dynamical behavior and geometry
are reflected in each other.



1986 Hubbard approach: complex Hénon maps

View them as small perturbations of the 1-D case

H(z,w) = (z°+c—aw,z): C — C,
H 1 (z,w) = (w, (w? +c—z)/a)
KE={(z,w) e C?: H"(z,w) A oo, K=K NnK~
JE=0K*, J=JtnJ-
The forward /backward escape loci are
Ut :=C*-J*

As in dimension 1, we define the (forward/backward) Fatou sets F* as the
sets of normality for the families {H*" : n > 0}, and the Julia sets J* are
defined as the complements of the Fatou sets. The following is immediate:

The (forward/backward) Fatou sets F* = int(K)* U U™.



The Green function for the forward escape locus may be defined using the
same dynamical formula as in dimension 1.

Theorem (Hubbard)

The limit

1
Gt := lim —log™ ||[H"(z, w)||

n—oo 2N
converges uniformly on C? and satifies
® GToH=2GT"
e UT:=C° - K" ={G" >0}
The Green function is pluriharmonic on U™, and OG™ induces a
holomorphic foliation G on U*. Hubbard’s first approach was to study

the properties of UT and GT.

Note: KT is never compact.



Why is this interesting for SCV?

These are like “rough versions” of objects we know well.
G™ is pluri-harmonic on {G™ > 0} and 0G™ # 0

JT =1lim{G" = ¢}

e—0

so JT is a (generalized) “Levi flat hypersurface”

In principle, J* is laminated by Riemann surfaces, and its cross section is
like a 1-dimensional Julia set.

Generically, 0GT AOG~ # 0, and

J=1lim{Gt =G =¢)

e—0

so J=J"NJ is “totally real".



Theorem (Hubbard-ObersteVorth)

The topology of the set U,J_j is independent of H

K* and UT are very interesting from the point of Complex

Analysis/Geometry.
Hubbard conjectured and gave evidence for: If H; and H» are two Hénon
maps, and if Uf;l is biholomorphically equivalent to Uﬁz, then H;y = H,.

Given amap g : S — S, an invertible map is obtained from the projective
limit, which is the shift map acting on the sequence space

{(Sn)nEZ . Sn+1 — g(Sn)} C S~
A validation of the Hubbard approach was given by:

Theorem (Fornaess-Sibony, Hubbard-ObersteVorth)

If p(z) = z* + c is expanding on its Julia set J,,, and if |a| is sufficiently
small, then the restriction H|; : J — J is topologically conjugate to the
projective limit of the 1-dimensional map p|, : Jp — Jp.



Approach #2: consider all polynomial automorphisms of C?

Use the structure of the group — Jung's Theorem

Theorem (Friedland-Milnor)

If f is a polynomial automorphism of C?, then either
® { has elementary dynamics.

® f is conjugate to a map of the form f, o --- o fy, where
fi(x,y) = (pj(x) — 0y, x), pj polynomial and é; € C, §; # 0

Other results in the F-M paper show that if you study the map H, then you
are actually studying the nontrivial polynomial automorphisms of C?. In a
similar way, we define G* and U™, etc., for f = fio---o fy.

One roadblock to studying polynomial automorphisms of C3 is that there is
no known analogue of Jung's Theorem, which gives a convenient set of
generators for the automorphism group. [If you wanted to start working in
C3, what maps would you study first?



s there a special map in the Hénon family?

In dimension 1, there are the maps z — z9 for d € Z, as well as the

Chebyshev polynomials T4. These maps are special in many ways,
including the fact that their Julia sets are “familiar’ sets — the circle and

the interval. These models get special attention.

However, for Hénon maps, it seems that there is nothing analogous.

Theorem (B-Kyounghee Kim)

If f is a Hénon map, then the forward/backward Julia sets J* are never

® C! smooth, as a manifold-with-boundary

® Semi-analytic.



Revisit Hubbard's conjecture about the escape locus

Maps are determined by their dynamical sets

The topological type of the escape locus Ur depends only on the degree of
f=1fo---ofy.

Hubbard's conjecture has developed into a very striking general result:

Theorem (Ratna Pal)

Suppose that f = fio---ofy and f' = f{ o---ofy, are Hénon maps. If the
escape locus U],?L is biholomorphically equivalent to U;t , then f and f' are
(essentially) the same.

Meaning of “essentialy’:

® fand fho---o fyof; are conjugate, so have the “same’ escape locus.
® \We may rotate f into f’ by certain d?(d — 1)-th roots of unity.



Approach #3: the sets K= and the currents on them

The response of B and Sibony upon seeing Hubbard's talks:
“What can we say about u* and u?”

We define: )
1T = dd°G* = 2i90G*
It follows easily that
support(pT) = JF
If d is the degree of f, we have G*of =d*G*, which gives

f*fut =d-pt and F*u- =d 1y,

If L C C?, the slice measures are given by pu*|L := dd°GT|,. This is
the classical harmonic measure for the set K™ N L inside L = C. Thus
we think of u* as the universal harmonic measure for K.

We may define the measure 11 := A u™, and it follows that

P = fup = p



Interlude on pluri-potential theory
If E C C" is compact, then the pluri-complex Green function is given by
Ue(z) = sup{v(z) : v<0on E, and v grows no faster than logarithm}

The equilibrium measure is given by the Monge-Ampére operator

e = (dd<Ug)".

Theorem (B-Taylor)
The support of (g is the Shilov boundary of E.

We apply this to our mapping f, and we obtain:
Theorem (B-Sibony)

The Green function of K is Ux = max{GT, G}, and p = px = p~ A~



How many Julia sets are there?
J=J7

We have the “classical” Julia sets J*, where the forward or backward
iterates do not make a normal family.

We also have the set J:=JT N J~.

We may also set

J* := Shilov boundary(K) = support(u)

Clearly, we always have J* C J.

Open Question: Is it always the case that J = J*7

This question has been intensively studied and may be one of the hardest
in the subject.



Attraction and basins
Given a closed set E, we set

W*(E) = {(z,w) € C? : dist(f"(z,w), E) — 0}

If E is an attracting fixed (periodic) point, then W*(E) = C?.
If E is a saddle (periodic) point, then W*(E) = C.

Basins of attracting fixed points:

® The original Fatou Bieberbach domain was obtained by taking a cubic
Hénon map f(x,y) = (x> — ax — by, x) with suitable a, b to have
attracting fixed points £P. In this case there are two basins, W?*(P)
and W*(—P), which must be disjoint and are both = C2.

® |n 1974, Newhouse showed that there are real Hénon maps fr for
which there are infinitely many (real) attracting cycles p;. For each of
these, the (real) basin, W*(p;, fr) C K NR? is an (open) disk. Each
basin W*(p;, fr) in C? is a Fatou-Bieberbach domain, and of course
intersects R? in a disk.



Two approaches to dynamics

Orbits of points
Given a dynamical system f : X — X, we may study point orbits: the sets
O(x) :=A{f"(x) : n € Z}
What happens to a point x € X as we iterate it?

Action on 1-dimensional sets

e Suppose that E C C? is an algebraic curve or analytic disk, and
consider the map

Es f(E)or Evs f!
How does f"(E) behave as n — 4007

® Let 7 denote the set of positive, closed (1,1)-currents.
What is the behavior of f*: 7 — T 7



Pass to the compactification P? = C? U L,

One of my favorite theorems is by Fornaess and Sibony
If a current has a local potential, i.e., T = dd“u locally, then we pull it
back by setting f*T := dd(uo f).

The operator dd€ = 2i00 sets up an isomorphism between the Lelong class

g, L = {psh uonC?: u(z) <log™ |z|| + O(1)}
an

71 = {positive, closed currents on P?, no mass at L., total mass 1}

A Hénon map f extends to a birational map of P2, and L1 f* : 77 — T1.
d

Theorem (Fornass-Sibony)

® The current u* is the unique global attractor for %f * acting on T;
® |f T is pos, closed on C?, and if Supp(T) C KT, then T = .



Advantages of studying " instead of J*
Using currents leads to a different sense of convergence
Let M C R” be an oriented k-manifold. The current of integration [M] is

defined by its action on the space of test k-forms:

(IM], ) f/wSO

Passage manifold ~ current of integration behaves well under mapping:
F*[M] = [f~IM] and f,[M] = [f(M)]. And d[M] = [0M]. Convergence of
currents is defined as

Ilmj—)OOT — Tlf\V/QD < 1790> <T790>
Note that [D?] is not closed since d[D®] = [0D?], but we have:

Theorem (B-Smillie)

Let D C C? be a complex disk, and let c = Mass of slice measure pi™|p.

Then 1 |
—[D] = —[f"D +



Advantages of studying " instead of J*

Everything seems to “happen” at J*

Corollary

If p is a saddle point, then W*(p) = C is a dense subset of J*.
In particular, if p1 and py are saddle points, then W*(p1) = W3(p2).

Proof: Let p € D° C W?(p) be a complex disk. Then = |ps # 0. Further,
DS c f~Y(D%) c ---, so W5(p) = |Jf~"(D?) dense in Supp(p™).

Corollary

Let p be an attracting fixed point, and let B(p) = C? be its basin of
attraction. Then 0B(p) = JT.

In particular if By, By, B3, ...are basins, then they all have the same
boundary.

Proof: Similar argument.

Thus W*(p)'s and B(p)'s must be strangely imbedded and intertwined.



Structure of p™

Or, more accurately, the picture that is in my mind

JT has a lamination W* by stable manifolds; T is a transversal, and the
slice measures serve to “measure” the lamination W>.
pT is a geometric current made out of slice measures u|+ and currents of
integration over pieces of stable manifolds M;, t € T.
This means that, locally, u™ = [,_7[M:]d(u"|7), acting on test form ¢:

(W, @) = /t€T<[Mt]790> d(p|7) :/teT/Mt@ d(p*|T)

\/@
T ED H{"‘H%

”S“Pi’(/“)
\_,,//\v



Distortion of the Fatou-Bieberbach imbedding

Local linearization of map at attracting fixed point extends to global imbedding of C?

a 0
f(p) = p, Df:[O =L a| <1,30:Cf, = Cj,,, Pol=Ffod

Consequences of convergence of the currents d="[f " D]

® non-vanishing mass = Area(f~"(®(D))N U) ~ cd”

® Area(d(D(r)) N U) ~ cr*, with u = log(d)/log(|la|™t) > 0

® convergence of currents = components of ®(f~"D N U) must “line
up” with the lamination of OB = J™.




Structure of = pu* A pu~

Monge-Ampére can also be interpreted as a geometric intersection product
This is crucial for further dynamical applications.
Analytic definition of the measure u = u* A u=:

/gpu::/G+dngaAu_

Geometric intersection:

—*
e 4 I=tsansversalf
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Ergodic theory consequences of product structure

1 gives distribution of saddle points and J* gives heteroclinic classes

Theorem (B-Lyubich-Smillie)

Let f be a complex Hénon map, and let S,, be the saddle cycles of period n
® forpi,pp €S, Ws(p1) N WH¥(py) = J*
e S=J

- 1
® p=limp e dn ZpGSn 5P




Interlude: Simplest map in dimension 2
Product map, an Endomorphism of P?

Apply previous approach to a very different map: high vs low topological degree.
degalg(F) =2< degtop(F) =4

F(z,w) = (z%,w?) : C* — C?

[z:w: €] [2°: w?: €2 PP — P?

G(z,w) = lim zl g™ |F"(z, w)|| = max{log |z], log |w], 0}
Currents:
T=dd°G, T?°:=TAT=p=diAdo|{z=jw=1}
F*T =2T, F*(T%) =4T?
Julia sets:

J1:=Supp(T), Jo:=Supp(T?)



Fatou Set for F(z, w) = (2%, w?)
The Fatou set, i.e., where the iterates are a normal family, is

F = three attracting basins = Ule B, =P — )

S~
B
Wil =
» XS
¥ k) =1
Ealn S

What about J? The definition of the Monge-Ampére operator (dd€)? has
a rather indirect analytical definition (integration by parts).

When we are working with a dynamically generated potential, such as the
G above, does (dd€)? have definition that “makes sense” dynamically or
geometrically?

In the Hénon case, it was technically important that we could show that it
was given by a geometric intersection product.



Laminar structure of T = dd“G = max{log |z|, log |w|,0}

F is hyperbolic; p is index 2 (repelling), and o}, j = 1,2, 3 are index 1
(saddle type). F is structurally stable, so it and o and the laminar
structure all persist under small perturbation.

Can we write o = (T1 + T + T3)? as a geometric intersection product?
Can this geometric intersection be robust enough to work for small
perturbations of F7



We return to invertible maps in dimension 2.

We will be led to rational surface automorphisms

Theorem (Cantat)

If X is a compact, complex 2-manifold, and F : X — X is a holomorphic
automorphism with "nontrivial dynamics”, then X is one of the following:

® 3 torus C?>/L and F linear,
® a3 K3 surface or a quotient of one, or

® a rational surface (to be explained later).

The parameter spaces of the first two cases (torus and K3) are of small
dimension, whereas there are spaces of rational automorphisms of arbitrarily
large dimension. So we consider this case to be the “principal” one.



A rational map F = [Fg : F1 : F>] : P? ——s P? is given by a triple of
homogeneous polynomials of the same degree d, with no common factor.
d is the degree of F. If F has an inverse, it is birational. d is not a
birational invariant, but the dynamical degree is

ddeg(F) := lim (deg(F"))

n—00
Note that our original map H(x,y) = (x? + ¢ — ay, x) can be written in
rational form as H[x : y : z] = [x? 4+ cz? — ayz : xz : z2]. The inverse is
given by H 1 [x:y: z] = [yz: (y* + cz®2 — xz)/a: Z?].
(Note that Ho H™! = 23 [x : y : Z].)
For any Hénon map f, its dynamical degree is the same as its degree. Thus
ddeg(f) is an integer. On the other hand,

If F: X — X is a compact surface automorphism, and if ddeg(F) > 1,
then ddeg(F) is algebraic but irrational.

In other words, compact surface automorphisms are never birationally
equivalent to Hénon maps.



Invariant currents for compact surface automorphisms

Let f : X — X be a compact surface automorphism with ddeg(f) > 1,
then £* : H?(X) — H?(X) has a unique eigenvector a™ such that
f*a™ = ddega™. Thus there exists a smooth v such that

f*(a™) = ddeg - a™ + dd~T
It follows that

o0 T O fn
G =205 deeg”

converges to a continuous function on X, and u* :=a™ +dd°G™" is
invariant, i.e., f*ut = ddeg - uv.

Theorem (Cantat)

Let f : X — X be a compact surface automorphism with ddeg(f) > 1.
Then p* and i give dynamical results parallel to the case of Hénon maps.



Examples of rational surface automorphisms

Theorem (Nagata)

If F: X — X is a rational surface automorphism with ddeg > 1, then there
is a birational map g : P? --» P? and a blowup 7 : X — P? such that F is

the induced map F =ntogom.

The set of birational maps of the plane is large, and it is an open question
which birational maps will lift to automorphisms.
In degree 2, the simplest birational map is the Cremona involution2

1 1 1
Jx1:x0 x3] = [;1 : ~ : ;3] = [xox3 : X1X3 : X1X2]

Cremmonos

IThvo ‘ U‘H,D‘f\




The quadratic family f := Lo J =L - [yz, xz, xy|"
Work with the simplest family: Cremona involution followed by linear,
so each coordinate of f is a linear combination of just yz, xz, xy

n A
Gt o 9( ‘
Firrite Sy ™ £ y=0)
Selob s LS
C@ né‘f‘ﬂah 1 €\®
Al

The Finite Orbit Condition says: There is a permutation o of {1,2,3} and
three numbers ny, na, n3 such that f"({x; = 0}) = e,(jy. This is equivalent
to a polynomial condition on the coefficients of L.

Theorem (B - Kyounghee Kim)

A map of the form f = L o J lifts to an automorphism if and only if it
satisfies the finite orbit condition.



Theorem (Diller)

Let integers ni, na, n3 > 0 and a permutation o of {1,2,3} be given.*
Then there is a quadratic automorphism realizing the orbit data
((n1, 2, n3),0). Further, ddeg > 1 iff ny + ny + n3 > 10.

® The "*" in the statement means that there are some exceptional cases.

® The automorphisms in Diller's Theorem all have invariant curves; the

only possibilities are the cubics pictured. With some exceptions, we
are able to freely choose the invariant curve.

N

® This gives a rather simple algebraic construction of the matrix L.

Conjecture: “Most” automorphisms f := L o J do not have invariant curves.



Maps with invariant curves are like a generalization of Hénon maps, since
the (birational) Hénon map H : P2 - P? has the line at infinity L., as an
Invariant curve.

If C = {q = 0} is an invariant curve for the rational map f : C? --» C?,
then the (meromorphic) 2-form n = dx A dy/q(x, y) is invariant:

f*n = an for some o € C.

Theorem (McMullen and .. .)

Let f =LoJ: X — X be a quadratic automorphism with an invariant
curve C. Then the singular point P of C is a fixed point for f, and P
belongs to the Fatou set of f or f~1. If ddeg > 1, then « is a root for the
minimal polynomial of ddeg. Further, either |a| =1 or a € R, in which
case it is ddeg or ddeg™*.

e Ifaa=ddeg ™t < 1. Then P is an attracting fixed point. In this case,
the Fatou set F = B(P) and has full volume in X.

® |f |a| =1, then there is a Fatou component €2 containing P which is
invariant under a torus T!-action.



Fatou dynamics

In dimension 1, Fatou classified the periodic F-components. By Sullivan, every
F-component is pre-periodic. If F # (), we know the dynamics on a dense, open set.

Question: If F £ (), is it necessarily dense in X7

Question: Can we make a classification of periodic Fatou components for
surface automorphisms? Maybe something like:
® Attracting basins
1. B(point) = C? v vV
2. B(rotational disk) = D x C 777
3. B(rotational annulus) 2 A x C 777

® Basin of parabolic or semi-parbolic point or disk or annulus 777

® Rotation domains v'v'v'(Invariant domains €2 such that the iterates
{f"q} generate a torus TV, j =1,2.)
What are the possibilities for Q as a domain in C??

® Something else 777



